Infotag

"Nichtlineare Optimierung und stochastische Analysen" 27. Juni 2003 in Stuttgart

Multidisciplinary Optimization using the Successive Response Surface Method

Heiner Müllerschön, Nielen Stander hm@dynamore.de, nielen@lstc.com

Topics

Introduction

LS-OPT: Application of the Successive Response Surface Method (SRSM)

Example: Multidisciplinary Optimization (MDO)

Introduction

What is LS-OPT?

- LS-OPT is an environment to explore automatically the design space and find an optimum design
- LS-OPT is a product of LSTC (Livermore Software Technology Corporation)
- LS-OPT is based on the Successive Response Surface Method (SRSM). Statistical approaches (Robustness Analysis) and genetic algorithms (Discrete Methods) will be implemented in near future
- LS-OPT provides a graphical user interface (GUI)
- LS-OPT can be linked to any simulation code, but it is perfect suitable in combination with LS-DYNA

Why Response Surface Method and not Gradient Based Methods?

- Highly Nonlinear Problems
- Local Sensitivities may lead to local optimums
- Difficulties by the Computation of Numerical Gradients
 - If the perturbation intervall is too large: loose accuracy
 - If the perturbation intervall is too small: find spurious gradients

SRSM: How does it work?

Design surfaces are fitted through points in the design space to form approximate optimization problem

The idea is to find surfaces with the best predictive capability

Design Space, Region of Interest & Experimental Design Points

Feasible Experimental Design

Successive Approximation Scheme

Graphical User Interface

			le 4			
Response Surface Approximation Linear						
		Min 1		Max 1		
			acim Variablas	Design Variable		
		11	esign variables			
Туре	Name	Starting	Range	Minimum	Maximum	Transformation
Type Variable 🖃	Name var130	Starting	Range 0.02	Minimum 0.005	Maximum 0.02	Transformation
Type Variable II Variable II	Name var130 var131	Starting 0.02 0.03	Range 0.02 0.03	Minimum 0.005 0.005	Maximum 0.02 0.03	Transformation None Non
Type Variable I Variable I Variable I	Name var130 var131 var150	Starting 0.02 0.03 0.02	Range 0.02 0.03 0.02	Minimum 0.005 0.005 0.005	Maximum 0.02 0.03 0.02	Transformation None
Type Variable I Variable I Variable I Dependent I	Name var130 var131 var150 var200	Starting 0.02 0.03 0.02 Definition (1	Range 0.02 0.03 0.02 var100+var130)/2	Minimum 0.005 0.005 0.005	Maximum 0.02 0.03 0.02	Transformation None

Graphical User Interface

<u>F</u> ile <u>H</u> elp		Info Solver	ExpDesign	Histories	Responses	Constraints	Objective	Run	View
USER-DEFINED EXPRESSION ABSTAT BNDOUT DEFORC ELOUT FLD GCEOUT GLSTAT JNTFORC MASS MATSUM NCFORC NODOUT NODFOR PSTRESS RBDOUT RCFORC SECFORC SECFORC SPCFORC SPCFORC SWFORC THICK Composite - Expression	Node Number 1 Response Type Displacement Velocity Acceleration Rotational Displacement Rotational Velocity Rotational Acceleration Injury Coefficient Time Evaluation Option Maximum Time Value Filtering SAE Filter	Select a Componer X Componer Y Componer Z Componer Z Componer Sampling Interv I Frequency 180	t 1t 1t 1t 1t 1t 1t 12 4			(USEH (USEH))))))))))))))))))))))))))))))))))))	C-DEFINED C-DEFI	1) L "do 2) L "do 3) L "do 4) L "do 5) L "do 6) L "do 7) L "do 8) L "do 10) L "d 11) L "d 12) L "d 13) L "d 13) L "d 13) L "d 15) L "d 15) L "d 16) L "d	ppe ppe ppe ppe opi opi opi opi opi opi opi opi opi Cor Cor Cor
Approximation Order	Linear - Solver de	oppelhut 🔟							
Response Name	001527 [0.0					Add	Replace	I)elete

Graphical User Interface

Advantages of the Method

Global Optimization:

Response Surface have a tendency to capture globally optimal regions. Local minima caused by noisy response as well as the step-size dilemma for numerical gradients are avoided

Parallel Computation:

Successive Response Surface scheme allows parallel (independent) computation of experimental points within one iteration

Flexible Design Exploration:

Design exploration can be changed within the optimization process. Thus, control of the computational time and the quality of the Response Surface is possible

Trade-Off Studies:

Since the Response Surface is determined, easy examination of varying constraint bounds is possible (not reliable with linear approximations)

Fully Integrated Optimization - Crash and NVH

Full Vehicle - Crash Performance (LS-DYNA)

Full Vehicle - Crash Performance (LS-DYNA)

BIW-Modell - NVH Performance (LS-DYNA)

LS-DYNA eigenvalue problem - FORD TAURUS BIW Time = 38.736 **Baseline:** > 18 000 elements Torsional Mode 1 Frequency = 38.7 Hz

Design Variables (Thickness)

Design Formulation – FULLY SHARED VARIABLES

Design Objective:

Minimize (Mass of components)

Design Constraints:

- Displacement > 551.8mm
- 37.77Hz < Torsional mode 1 frequency < 39.77Hz</p>
- Stage1Pulse > 14.34g
- Stage2Pulse > 17.57g
- Stage3Pulse > 20.76g

Thickness Design Variables Shared: 7

Rails (inner and outer),
 Shotgun (inner and outer), Aprons,
 Cradle rails, cross member

Mode Tracking

- During NVH optimization necessary to track mode as mode switching can occur due to design changes
- Search for maximum scalar (dot) product between eigenvector of base mode and each solved mode:

$$\max_{j} \left\{ \left(M_{0}^{\frac{1}{2}} \phi_{0} \right)^{T} \left(M_{j}^{\frac{1}{2}} \phi_{j} \right) \right\}$$

Optimization History: Mass (Objective) – FULLY SHARED VARIABLES

Optimization History: Maximum Displacement –

FULLY SHARED VARIABLES

Optimization History: Stage Pulses – FULLY SHARED VARIABLES

<u>Optimization History: Torsional Mode Frequency –</u> <u>FULLY SHARED VARIABLES</u>

Variable Screening

Goal: Remove of less significant variables

Variable Screening

Methodology: ANOVA (ANalysis Of VAriance)

- $\succ \Delta b_i$ depends on the variance of the simulation points
- \blacktriangleright Use a 90% confidence level and determine the lower bound

Variable Screening

- Variables are ranked according to lower bound
- If the lower bound < 0, regression coefficient is insignificant</p>
- In a linear approximation, a variable can be removed if its coefficient is insignificant

Design Formulation – PARTIALLY SHARED VARIABLES

Design Objective:

Minimize (Mass of Components)

Design Constraints:

- Displacement > 551.8mm
- > 38.27Hz < Torsional Mode 1 frequency < 39.27Hz</p>
- Stage1Pulse > 14.34g
- Stage2Pulse > 17.57g
- Stage3Pulse > 20.76g

Crashworthiness Design Variables: 6

Rails (inner and outer), Shotgun (inner and outer), Aprons, Cradle Rails

NVH Design Variables: 4

Shotgun (inner and outer), Cradle Rails, Cross Member

Optimization History: Mass (Objective)

Optimization History: Maximum Displacement

Optimization History: Stage Pulses

Optimization History: Torsional Frequency

Run Statistics

Run Statistics – Fully Shared MDO13 experimental points per iteration per discipline> 7 hours per crash simulation> 10 minutes per NVH simulation (700MB memory each)> 9 iterations to converge> 117 crash simulations and 117 NVH simulations

Run Statistics – Partially Shared MDO

- 11 experimental points per iteration for crash
- 8 experimental points per iteration for NVH
- ➢ 6 iterations for good compromised solution
- **66** crash simulations and **48** NVH simulations
- More flexibility in using resources (processors and memory)

Starting from Ligthest and Heaviest Design

Conclusions MDO-Example

Conclusions / Outlook / Remarks

- Multidisciplinary feasible optimization of a full vehicle model considering crashworthiness and NVH design criteria is described
- Almost 5% mass reduction is achieved while maintaining or improving of the design criteria of the baseline design
- Variable Screening allows the detection of unsignificant design variables
- The capability of partially or non shared variables for MDO may reduce the computational effort dramatically

Conclusions MDO-Example

Conclusions / Outlook / Remarks

- Optimization with current full vehicle crash models (500000-1000000 Elements) is still very time consuming and requires huge hardware resources
- Gradients of the linear implizit discipline (NVH) may be used for the calculation of the according Response Surface approximation
- Discrete Methodologies for sheet thickness optimization
- A two-stage approach with stochastic and deterministic methods, may be very efficient for crash

