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Introduction
What is LS-OPT?

LS-OPT is an environment to explore automatically the design 
space and find an optimum design

LS-OPT is a product of LSTC (Livermore Software Technology 
Corporation) 

LS-OPT is based on the Successive Response Surface Method 
(SRSM). Statistical approaches (Robustness Analysis) and 
genetic algorithms (Discrete Methods) will be implemented in 
near future

LS-OPT provides a graphical user interface (GUI) 

LS-OPT can be linked to any simulation code, but it is perfect 
suitable in combination with LS-DYNA
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Why Response Surface Method and not Gradient Based Methods?
Highly Nonlinear Problems
Local Sensitivities may lead to local optimums
Difficulties by the Computation of Numerical Gradients

If the perturbation intervall is too large: loose accuracy
If the perturbation intervall is too small: find spurious gradients

LS-OPT: Application of the SRSM
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SRSM: How does it work?

Design surfaces are fitted through points in the design 
space to form approximate optimization problem

LS-OPT: Application of the SRSM

The idea is to find surfaces with the best predictive capabilityThe idea is to find surfaces with the best predictive capability
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LS-OPT: Application of the SRSM
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LS-OPT: Application of the SRSM
Feasible Experimental Design
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LS-OPT: Application of the SRSM
Successive Approximation Scheme
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The Optimization Prozess
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LS-OPT: Application of the SRSM
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Graphical User Interface

LS-OPT: Application of the SRSM
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Graphical User Interface

LS-OPT: Application of the SRSM



Optimization using the Successive Response Surface MethodOptimization using the Successive Response Surface Method

Graphical User Interface

LS-OPT: Application of the SRSM
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Advantages of the Method

Global Optimization:                                          
Response Surface have a tendency to capture globally optimal regions. 
Local minima caused by noisy response as well as the step-size dilemma 
for numerical gradients are avoided

Parallel Computation:                                         
Successive Response Surface scheme allows parallel (independent)
computation of experimental points within one iteration

Flexible Design Exploration:                                  
Design exploration can be changed within the optimization process. Thus, 
control of the computational time and the quality of the Response Surface 
is possible

Trade-Off Studies:                                                    
Since the Response Surface is  determined, easy examination of varying 
constraint bounds is possible (not reliable with linear approximations)

LS-OPT: Application of the SRSM
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Fully Integrated Optimization - Crash and NVH

Example: Multidisciplinary Optimization (MDO)

Systems Level Optimizer
Goal: Minimize Mass

Crashworthiness and NVH 
Constraints

Design x(k)

Multidisciplinary Analysis
x(k)

CRASH     Crash Analysis
x(k)

NVH          NVH Analysis

Response SurfacesResponse Surfaces
f(x(k)

CRASH)
f(x(k)

NVH )

Iteration (k)

x(k)
CRASH
x(k)

NVH
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Full Vehicle – Crash Performance (LS-DYNA)

Example: Multidisciplinary Optimization (MDO)

Baseline:
30 000 elements

Displacement = 552mm

Stage1Pulse = 14.34 g

Stage2Pulse = 17.57 g

Stage3Pulse = 20.76 g
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Full Vehicle – Crash Performance (LS-DYNA)

Example: Multidisciplinary Optimization (MDO)
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BIW-Modell - NVH Performance (LS-DYNA)

Example: Multidisciplinary Optimization (MDO)

Baseline:
18 000 elements

Torsional Mode 1 

Frequency =  38.7 Hz
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Design Variables (Thickness)

Example: Multidisciplinary Optimization (MDO)

Left and right
Apron (1)

Inner and 
outer rail (2)

Front cradle cross 
members (1)

Left and right
cradle rails (1)

Shotgun outer and inner (2)
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Design Formulation – FULLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)

Design Objective:
Minimize (Mass of components)

Design Constraints:
Displacement > 551.8mm
37.77Hz < Torsional mode 1 frequency < 39.77Hz
Stage1Pulse > 14.34g
Stage2Pulse > 17.57g
Stage3Pulse > 20.76g

Thickness Design Variables Shared: 7
Rails (inner and outer),
Shotgun (inner and outer), Aprons,
Cradle rails, cross member
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Mode Tracking

Example: Multidisciplinary Optimization (MDO)

During NVH optimization necessary to track mode as mode 
switching can occur due to design changes

Search for maximum scalar (dot) product between 
eigenvector of base mode and each solved mode:
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Optimization History: Mass (Objective) – FULLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)
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Optimization History: Maximum Displacement –
FULLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)
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Optimization History: Stage Pulses – FULLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)
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Optimization History: Torsional Mode Frequency –
FULLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)
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Variable Screening

Example: Multidisciplinary Optimization (MDO)

Maximum displacement
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Goal: Remove of less significant variables
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Variable Screening

Example: Multidisciplinary Optimization (MDO)

00

Coefficient: variable jCoefficient: variable j

From regression
analysis 90%

Methodology: ANOVA (ANalysis Of VAriance)

depends on the variance of the simulation points

Use a 90% confidence level and determine the lower bound

jb∆
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Variable Screening

Example: Multidisciplinary Optimization (MDO)

Variables are ranked according to lower bound
If the lower bound < 0, regression coefficient is 
insignificant 
In a linear approximation, a variable can be removed if its 
coefficient is insignificant

00

00

SignificantSignificant

InsignificantInsignificant

Value which determinesValue which determines
significancesignificance
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Design Formulation – PARTIALLY SHARED VARIABLES

Example: Multidisciplinary Optimization (MDO)

Design Objective:
Minimize (Mass of Components)

Design Constraints:
Displacement > 551.8mm
38.27Hz < Torsional Mode 1 frequency < 39.27Hz
Stage1Pulse > 14.34g
Stage2Pulse > 17.57g
Stage3Pulse > 20.76g

Crashworthiness Design Variables: 6
Rails (inner and outer), Shotgun 
(inner and outer), Aprons, Cradle Rails 

NVH Design Variables: 4
Shotgun (inner and outer), Cradle Rails,
Cross Member
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Example: Multidisciplinary Optimization (MDO)
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Example: Multidisciplinary Optimization (MDO)
Optimization History: Maximum Displacement
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Example: Multidisciplinary Optimization (MDO)
Optimization History: Stage Pulses
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Example: Multidisciplinary Optimization (MDO)
Optimization History: Torsional Frequency
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Example: Multidisciplinary Optimization (MDO)
Run Statistics

Run Statistics – Fully Shared MDO
13 experimental points per iteration per discipline

7 hours per crash simulation
10 minutes per NVH simulation (700MB memory each)
9 iterations to converge
117 crash simulations and 117 NVH simulations

Run Statistics – Partially Shared MDO
11 experimental points per iteration for crash
8 experimental points per iteration for NVH

6 iterations for good compromised solution
66 crash simulations and 48 NVH simulations
More flexibility in using resources (processors and memory)
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Example: Multidisciplinary Optimization (MDO)
Starting from Ligthest and Heaviest Design
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Conclusions MDO-Example
Conclusions / Outlook / Remarks

Multidisciplinary feasible optimization of a full vehicle model 
considering crashworthiness and NVH design criteria is 
described

Almost 5% mass reduction is achieved while maintaining or 
improving of the design criteria of the baseline design

Variable Screening allows the detection of unsignificant
design variables 

The capability of partially or non shared variables for MDO
may reduce the computational effort dramatically
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Conclusions MDO-Example
Conclusions / Outlook / Remarks

Optimization with current full vehicle crash models (500000-
1000000 Elements) is still very time consuming and requires 
huge hardware resources

Gradients of the linear implizit discipline (NVH) may be used 
for the  calculation of the according Response Surface 
approximation

Discrete Methodologies for sheet thickness optimization  

A two-stage approach with stochastic and deterministic 
methods, may be very efficient for crash 


