

Hybrid III 50th Percentile Male

- Hong Zhou, Jim Rasico, Fuchun Zhu, Robert Kant
 - First Technology Safety Systems, Inc.

Contents

- Introduction
- Current Improvements (Based on PDB data)
- Upgrade Plan
 - Geometry Improvement
 - New Meshing
 - Material Tests
 - Component Tests
 - Sled Tests

Page 2

Introduction

Crash Test Dummies: Hybrid-III

- Alderson Research and Sierra Engineering with GM creates first automotive crash test dummy, the Hybrid I, in 1971
- GM improves Hybrid I, developing the Hybrid II dummy
- Hybrid II dummy becomes the standard for frontal crash testing to comply with regulations governing restraint systems in 1972
- Between 1973-1977 the Hybrid III dummy is created
- In 1986 Hybrid III is accepted as an alternative test device for government compliance FMVSS 208 / NCAP
- In 1998, ECE R94 using H-III comes into effect

Current Improvements

- Head and Neck
- Thorax
- Legs
- Foot and Shoe

- Head skin and skull geometry scanned and remodelled.
- Head assembly mass and inertia verified.
- Head vinyl skin material re-calibrated to meet standard head drop calibration tests.
- Updated neck cable modeling

Head Geometry

The H3-50 head was scanned at FTSS using a laser scanner •

novative Solutions

• The H3-50 head was remodelled, with the skin and skull separated.

- Updated neck cable modeling
 - The cable slack translational spring was removed.

-LS-DYNA: A non-linear elastic stiffness curve is implemented for the neck cable beam elements and the stiffness curve optimized.

Standard Head Drop Test

Head Performance Specifications	FTSS Model		
Peak resultant acceleration between 225 and 275 g's (CFC1000)	241.9		
Unimodal acceleration curve; Subsequent oscillations < 10% of peak resultant acceleration.	8.3%		
Lateral acceleration <15g.	2.09		

- Thorax Model Development
 - New rib damping material tests and ensolite foam tests helped achieve a better dummy material characterization for the thorax sternum impacts.
 - The revised H3-50 model based on the jacket and pad geometry measurements taken at Audi, VW and BMW achieves a good correlation to test.

Rib damping and Ensolite pad material development impact tests conducted at FTSS

 Ensolite material drop tests at 3 speeds were used to develop the jacket ensolite pad properties

thorax jacket/pad measurements

Summary of PDB Jacket and Ensolite Pad Measurements - 31st August 2005

	AUDI	Volkswagen	BMW			
H3-50 Test Dummy ID	D 0.12	ID 91	ID 307			
Dummy manufacturer	FTSS	FTSS	Denton			
Date of H3-50 purchase	?	?	Oct-96		PDB geometry	
Details of any H3-50 jacket						
spare parts purchased	?	?	?			
completed	30.08.2005	31.08.2005	30.08.2005	↓ ◆		
Measurements		Volkswagon	RM/M		Avorago (FTSS)	% Doviation
A [mm]		10			Average (1100)	70 DEVIALIUIT
R [mm]	27	29	40	32.0	28.0	-11/8
C [mm]	247	245	250	247.3	246.0	-10%
D [mm]	67	66	79.5	70.8	66.5	-6%
E [mm]	25	21	25	23.7	23.0	-3%
Image: base of the sector of the						

Geometry Improvements

Sternum -30mm Impact Test Load case test ID: IP1_1_C2, Final Correlation

¹⁵ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 15

Sternum +30mm Impact Test Load case test ID: IP2_1_C2, Final Correlation

⁶ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 16

Lower Rib 0 Deg Impact Test Load case test ID: IP4_1_C2, Final Correlation

Lower Rib 22.5 Deg Impact Test Load case test ID: IP5_1_C2, Final Correlation

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 18

Upper Leg Model

- Modeling modification mass distribution 1
 - re-calibration the upper leg and knee mass distribution in the FE model

Ankle assembly

+screw: 0.771 kg.

- Modeling modification mass distribution 2
 - re-calibration the lower leg mass distribution in the FE model

Lower leg and foot total mass: 5.41 kg

Lower leg foam: 1.0205 kg.

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Lower leg bone (hollow inside)

+ screw 2.0048 kg.

- Model modification
 - The lower leg flesh is now sub-divided into 2 parts:
 - 1. Outer vinyl skin 2. Inner leg foam

- Geometry modifications
 - Measurements were taken in positions A and B of the standard uninstrumented H3-50 lower leg and the PDB model adjusted accordingly.

- Material optimization for lower leg vinyl skin
 - The vinyl skin properties are optimized using the Tibia_IP3a load case —
- Material optimization for lower leg inner foam ٠
 - The inner leg foam stiffness is optimized using the Tibia_IP2a load case _

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

 \mathbf{a}

• •

. . .

11

• The IP8, IP9, IP10 (Y-direction loading) test videos show the lower leg rotating relative the knee joint during the first phase of the impact.

PDB test video (**IP8**) shows that lower leg rotates relative to the knee.

- Investigation in the FTSS lab shows that manual force can rotate the lower leg relative to the knee by 3-5 degrees quite easily.
- **Conclusion:** The clevis has some rotational compliance.

Knee Clevis

Investigation confirms that the clevis joint rotates.

- Dyna specific modifications
 - The H350 v5.1 Dyna model clevis is represented by a translational joint _ with a knee clevis spring for clevis displacement.
 - In the new PDB v5.0 model, the translational joint is replaced by a cylindrical joint with a rotational spring (defined along the local R- axis of the joint) for rotational compliance.

- Knee slider modification
 - The knee slider damping stiffness curve shown below in the red dotted line is optimized for improved knee slider and upper tibia behavior.
 - The original characteristic is shown in blue. now use the knee slider damping characteristic shown in red dotted line.

- Knee slider modification
 - The knee slider damping characteristic is optimized using the IP2 load case. Relates to three different impact velocities.

Audi Data BMW Data

 The simulation results of Tibia_IP2a , IP2b and IP2c are shown below.

Foot and Shoe Model

 The foot vinyl material properties are optimised using the IP4_No_a (no shoe) impact load cases.

 The shoe in-sole and heel properties are optimised using the IP4_Ba/Su (with shoe) load cases.

Foot and Shoe Model

- Ankle stop angles defined for X, Y, Z axis
- Ankle joint orientation co-ordinate system now defined relative to foot ankle ball, instead of lower leg as in v5.0 model.

- A foot vinyl node was incorrectly attached to the foot bone. This is fixed.

This node was not constrained to the foot bone.

Lower Leg TIBIA_IP3a Tibia Index Upper and Lower

TIBIA_IP10_Bates Shoe Tibia Index Upper and Lower

 $TI = |M_B / (M_B)_C | + |F_Z / (F_Z)_C |$ $(M_R)_C = 225 Nm$ $(F_Z)_C = 35.9 kN$

H3-50th Upgrade Plan

- H3-50 G-2 model upgrade project
 - Local/global geometry verification/update;
 - Global geometry check
 - Pelvis, abdomen and Jacket vinyl and foam separated
 - Stability
 - New material models
 - Vinyl
 - Foam
 - Rubber
 - Rib Damping
 - New component testing
 - Oblique and Orthogonal
 - Lumbar
 - Neck
 - Ribs
 - PDB Thorax Impactor Airbag

H3-50th Upgrade Plan

- H3-50 G-2 model upgrade project
 - PDB Sled Testing
 - More Optional instrumentation output channels modeled
 - Model available for Beta testing by PDB members at end of October
 - Production release v6.0 by early January

Geometry Improvements

³⁵ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 35

Geometry Improvements

X-Ray Scanning

Geometry Improvements

New Meshing

³⁰ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 38

New Meshing

Jacket

New Meshing

Abdomen

¹¹ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 41

Material Tests

⁴² Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 42

Material Tests

Material	Strain Rate	Test Type		
Vinyl 2 Grades	4 rates	Compression Volumetric Compression Stress Relaxation		
Butyl Rubber 3 Grades	4 rates	Compression Tension Stress Relaxation Volumetric Compression		
Foam 3 Grades	4 rates	Compression		
Ensolite Foam	4 rates	Same as above		
Rib Damping Material	4 rates	Compression Stress Relaxation Poison's Ratio		

Total: 148 tests

Material Tests

Material Tests - Vinyl

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

<u>Head Skin</u>

Material Tests - Foam

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 46

Material Tests - Rib Damping

⁴⁷ Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 47

Material Tests - Rubber

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

First Technology

Dynamic impacts on components; Quasi-static tests for joints

Single Rib Drop Test - Orthogonal

- 5 speeds
- Rib deflection ranges from 20mm to 73mm.
- High speed video used for tracking motion of multiple target points.

Update Dummy Models, DYNAmore GmbH Stuttgart, Copyright FTSS 2007, June 28 '07

Page 51

Single Rib Drop Test - Oblique

- 3 speeds
- Rib deflection ranges from 20mm to 40mm.
- High speed video used for tracking motion of multiple target points.

Lower Arm Drop Tests

- 6 speeds
- Drop head accelerations, force, and moment tracked.

Upper Arm Drop Tests

- 3 speeds
- Drop head accelerations, force, and moment tracked.

Upper Leg Drop Tests

- 6 speeds
- Drop head accelerations, force, and moment tracked.

Lumbar Spine Pendulum Impact

- 4 speeds
- Drop head accelerations, force, and moment tracked.

Pelvis – INSTRON Compression

Joint stiffness (nodding)

More optional load cells added

 Effective restraint design through a better understanding of the load path and energy flow through the dummy model

Sled Tests

- PDB Test Data
- Dummy model performance verification in user load case
 - Energy levels
 - Deformation modes
- Potential stability issues identify and addressed before production release

