D-SPEX

an advanced post-processor for optimization and stochastic investigations

Katharina Witowski katharina.witowski@dynamore.de

Martin Liebscher martin.liebscher@dynamore.de

Heiner Müllerschön heiner.müllerschön@dynamore.de

Overview

- S Introduction to D-SPEX
- S Optimization of an Adaptive Restraint System
 - Meta-model visualization
 - Visualization of constraints
 - Visualization of Pareto optimal solutions
- S DOE Sensitivity Analysis with LS-OPT
 - Feasibility
- S Application of Shape Optimization with LS-OPT
 - History curves and virtual histories
- S Stochastic Analysis Front Crash
 - Anthill plots
 - PDF/CDF
 - Correlation matrix, Sobol indices
- § Conclusions

Introduction to D-SPEX

- S D-SPEX is a Matlab based post processing tool that is specialized on the visualization of meta-model data provided by LS-OPT
- S Matlab is not needed to run D-SPEX
- S D-SPEX has been developed in cooperation with AUDI AG
- S D-SPEX provides features that are not currently implemented in the LS-OPT viewer Ł complement to the visualization capabilities of LS-OPT
- S D-SPEX provides features to visualize stochastic results

Four load cases :

- "Hybrid III 5% Female" dummy, belted
- "Hybrid III 5% Female" dummy, not belted
- "Hybrid III 50% Male" dummy, belted
- "Hybrid III 50% Male" dummy, not belted

S Design variables:

- upper force level
- the area of the vent holes
- trigger times of restraint system

Seat Belt Lock and Seat Weight Recognition available

L Optimization Problem

- Objectives
 - Minimize Thorax Acceleration
 - -> min BrustA3ms-05a
 - -> min BrustA3ms-50a
 - -> min BrustA3ms-05p
 - -> min BrustA3ms-50p

Constraints < regulation requirements</p>

- Head Injury Coefficient (15ms)
- -> HIC15-05a
- -> HIC15-50a
- -> HIC15-05p
- -> HIC15-50p

■ Femur Forces (left/right)

- -> FemurLi-05a
- -> FemurLi-50a
- -> FemurLi-05p
- -> FemurLi-50p

Thorax Intrusion

- -> BrustSx-05a
- -> BrustSx-50a
- -> BrustSx-05p
- -> BrustSx-50p

Thorax Acceleration

- -> BrustA3ms-05a
- -> BrustA3ms-50a
- -> BrustA3ms-05p
- -> BrustA3ms-50p

- S Meta-models for responses or composites
- S Analysis result points, residuals, optimum on meta-model
- S Point information

- § Multi objective optimization
 - objectives often conflict (e.g. power and consumption of a vehicle)
 - no unique optimum
- S LS-OPT 3.3: capability to compute many Pareto optimal solution using genetic algorithm
- S Pareto optimal solution: no design provides better solutions for any objective without worsening another objective

- S Visualization of Pareto Optimal solutions in D-SPEX
 - 2D or 3D sections
 - color as additional dimension may be selected

color variable x1

7.49

- 2D section
- objective f2 set to fixed value

- S All points or points within a small distance to the selected section may be plotted
- § Bandwidth may be selected by user
- S distance to the section is visualized using color-coding from black to white or transparency, if color is selected

DSPEX <trunk> - Settir</trunk>	ngs for plot window <plot #1="" window="">의</plot>	0.05				
File Window Task Options						
Single Multi	Accuracy History Multi History Feasibility Pareto Expert	0-				
selected	PLOT Vinstantl	ly adc ≌ ^{-0.05} -				
objectives	name defined in solver min value for	-0.1 -				
■ COM-File <smal for<br="" md0="">■ Variables ○ ○ ○ ○ ×1 ○ ○ ○ ○ ×2</smal>	Pointplotting (/home/katrin/D-SPEX/dspex-examples/21.MD0_W × fixed objective	-0.2 -			References your	
Solver di <1> ∃ Responses	objective -0.25914 • 0.12237	-0.25).25 -0.2	i i -0.15 -0.1 f1	-0.05 0	0.05 0.1
☐ Composites	objective 0,22000 - 0,22012 (2012 0,060952 - 0,2001 0,11095	-0.16005				
Options Range of response X Y Z @ adapting rese Odynamic	Plotting bandwidth of _all axes iteration: #1 _all previous iterations plotted points ∠ tradeoff points all points ✓ tradeoff points all points					
manual min: 0 r						

§ Pareto Optimal solutions

all Pareto optimal solutions

2D section, bandwidth 10% of design space

3D section, bandwidth 10% of design space

DOE Sensitivity Analysis with LS-OPT

- S Application Example: Radiation of a diesel particle filter
 - Design variables:
 - · materials of the heat shields
 - layer thicknesses of the heat shield
 - environment temperatures
 - temperature curve parameters of the heaters
 - Constraints:
 - temperatures at some elements of the heat shield

DOE Sensitivity Analysis with LS-OPT

Application of Shape Optimization with LS-OPT

S Improvement of the energy absorption of a crash box for a reduced maximum force level

Application of Shape Optimization with LS-OPT

- § History curves
- S Color of the curves to display the respective value of a variable, response or composite

DOE Sensitivity Analysis with LS-OPT

Application of Shape Optimization with LS-OPT

Application of Shape Optimization with LS-OPT

S Comparison of different meta-model types

Statistics / Plots

- § anthill plots
- § mean value
- standard deviations
- § marked points

Probability distribution type / empirical distribution

DSPEX <trunk> - Settings for plot window <Plot Window #1> - 🗆 🗙 Visualization of ... Window Task Options Correlation Matrix ANOVA DYNA Flot control Command file: Optimization Problem () 'media/serviini/vellov Estimate natameter PLOT Solver #1<1> linstantly adopt changes Farameter control defined in colu name 4 Figure 1: Plot Window #1 _ D X COM File (Optimization Problem) 🗅 🚘 🔲 🚭 🔖 🔍 Q < 🖑 🐌 🐙 -| 50/ver #1<1> - Responses ches is disp chest res disp (both empirical ×10 chest_x_acc chest_res_a enpirical empirical max_RMEORC1 max_RAFORC2 and estimated) estimate estimate max_RMFORC5 14 max_RWFDRC4 h c15 h c36 0.9 SECFORC_mid_resp. SECFORC front resp 12 Result hie15 mean: 369.49¹ 28.018 10 0.7 test result norma. ΠP 0.5 0.40.3 Statistical test (K-S) 0.2 0.1 § goodness of fit test for various 300 probability distribution types 300 350 400 450 350 400 450 **HIC** value **HIC** value

SPDF

S CDF

§ histogram

Statistics / linear Sensitivity: Correlation matrix

Approaches:

- § regression-based methods (e.g. correlation coefficient)
- § variance-based methods:
 - § linear ANOVA (Fisher et al.)

§ Sobol' indices

generally applicable non-linear sensitivity measure

 $S_i =$

Sobol' indice of variable v_i

variance caused due to v_i

total variance of response

determination computational expensive ► meta models are applied

linear vs. non-linear Sensitivity: Sobol' indices / Correlation

Meta model visualization

Conclusions

- S D-SPEX has been started as a prototype and testing environment for features
- S D-SPEX is now an outgrown product that is used in a production environment
- S D-SPEX provides a set of features that are unique for its kind of software
- S The visualization of constraints has been proven to be invaluable to explain the optimal results especially for multi load case optimizations or multi disciplinary optimizations
- S The visualization of "virtual histories" gives the engineer a new perspective
- L D-SPEX is meant to be a tool that supports the engineer in the process of understanding their system behavior

