

Structural Optimization with GENESIS

Martin Liebscher* martin.liebscher@dynamore.de

Info Day Optimization,... 06/02/2008

Outline

Overview

Optimization Capabilities / Examples

Topology Sizing Shape Topography Topometry Composite

Outlook

GENESIS

- Product of Vanderplaats R&D
 15 years in marketplace / DYNAmore distributor since 2007/2008
- design optimization by generating new designs based on user criteria such as mass minimization, frequency maximization, stress or displacement constraints...
- Large scale analysis and optimization (can handle extremely large numbers >10⁶ of design variables)
- Fully integrated fast and robust (linear) finite element analysis
- Uses standard Nastran input files / standard post-processing files

GENESIS

Fully Integrated Structural Analysis

- Analysis options
 - Linear statics
 - Normal modes
 - Frequency response
 - Heat transfer
 - Buckling

Element library

Genesis has a very complete finite element library that includes: bushing, rod, bar, beam, spring, shell, shear, composite, axisymmetric, tetra, penta, and hexa elastic elements along with the rbe1, rbe2, rbe3, rspline rigid elements. DMIG, GENEL and other general elements/matrices are also available.

Materials

Isotropic, orthotropic, and anisotropic.

Loads

Point, pressure, gravity, centrifugal, temperature, etc.

FEA Output in GENESIS

Format:

- Displacements, velocities & accelerations
- Grid stresses
- Grid temperatures
- Element stresses, strains & forces
- Strain energies
- Frequencies & mode shapes
- Buckling load factor
- Mass & volume
- Inertia & center of mass

Geometric Responses

- Easy enforcement of package space constraints during shape design
- Easy way to avoid mesh distortion
- Available responses include:
 - Angle, Length, Area, Volume, Point to plane distance

GENESIS Optimization Capabilities

GENESIS Design Studio 9.0 (pre-/post processing)

Typical Design Process

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- Sizing best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Find the Stiffest Structure Using 30% of the Material to Carry the Given Load

Minimize Strain Energy S.t. MASSFR <= 0.1

Load and Boundary Conditions

Standard Topology Results

Topology Example

Autorib Application

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- Sizing best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Sizing Optimization Example

PSHELL 2 **Design Variable x** $1.0 \le x \le 2.0$ mm **PSHELL** Properties T = xTS = (5/6) * xD = (1/12) * x **3Z1 = -0.5xPSHELL 1 Z2 = 0.5x

> All Element that reference the same Property set will have same thickness

PSHELL,ID,MID,T,MID2,D,MID3,TS + z1,z2

Sizing Optimization

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- Sizing best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Shape Optimization

Perturbation Vectors

Shape and Sizing Example

- Minimize mass of the aluminum, curved stiffened panel
- Constraints:
 - Frequency > 45 Hz
 - von Mises Stress
- Design Variables:
 - Thickness of skin and stiffeners
 - Stiffener web height
 - Stiffener flange widths

Shape and Sizing Results

- Objective
 - Reduced mass by 30%

- Constraints
 - Initially infeasible
 - Frequency (23 Hz)

Shape and Sizing Results

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- **Sizing** best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Topography Optimization Grids allow to only move up **Initial Design**

Grids allow to move up/down

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- **Sizing** best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen
 panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Topometry Optimization

- Works with any element that can be size optimized
- Works with all type of load cases in GENESIS
- It can be mixed with shape and topography
- Easy to set up

Adds new perspectives to topology optimization !!

Topometry Optimization Example

•Objective:

- Minimize Strain Energy
- •Constraints:
 - Mass
- •Design Variables: 324
 - Each Element thickness

Example of Topometry Optimization

Problem

Objective:

 Max Sum Of 12 Lowest frequencies

Constraints:

- Mass can increase up

15kg

Design Variables:

- 34,560 sizing variables
- 1.0 <= X <=2.0 mm

Results

•Objective:

- Frequency increased from

38.6 to 56.3Hz

(18 hz, 46% Gain)

•Constraints:

- Mass Increased 15kg

Design Variables:

- 34,560
- •Number of Design Cycles

- 15

Sizing vs. Topometry

+15 kg => 18 HZ Gains

+15 kg => 10 HZ Gains

Topometry helps to set targets and understand limits

Topometry work with Other

Types of Optimization

•Objective:

- Maximize Stiffness

•Constraints:

- Volume <=600mm³

•Design Variables: 726

- 720 Element thickness
- 6 Topography
- 1 Shape

Topometry + Topography + Shape

S TIFFNES S

GENESIS Optimization Capabilities

- **Topology** best distribution of material
- **Sizing** best dimensions of any designable elements
- **Shape** best shape possible
- Topography location and shape of bead patterns to stiffen panel structures
- Topometry optimal distribution of sizing dimensions over the structure (element by element)
- **Composite** layer thickness, shape, angle, ...

Composite Optimization Tools

KR&D

Design Variables:

- Thickness
- Angle
- Shape

Objective Function:

- Any response
- e.g. reduce mass or cost Constraint Function:
- Any response
- e.g. prevent buckling, Constrain failure indices, displacements, torsional/bending frequencies

Failure Theories Available:

- Hill Theory
- Hoffman Theory
- Tsai-Wu Theory
- Maximum Strain Theory

From small parts to whole systems

GENESIS Composite Optimization Loading Conditions **Designable Areas** 30.31 22.06 21.40 21.21 17.86 Mass reduced by 18% 16.55 16.16 **Designable Areas** Courtesy GRM Consulting and P+Z

ONSULTING I

OUTLOOK

VR&D GENESIS < > LS-DYNA Interface

- Implemented as an add-on to Design Studio an interface to LS-DYNA is available for VR&D GENESIS
- Interface supports all capabilities of GENESIS optimisation including:
 - Topology
 - Topometry
 - Topography
 - Size & Shape

GENESIS / DYNA Topology

Parking Break Study (two loading directions)

- Topology Optimisation performed to determine optimum material distribution for:
 - Positive gear torque
 - Negative gear torque
- Optimisation coupled to implicit LS-DYNA models consider gear and lock-pin contact conditions
- Concept design developed in 39 iterations, optimising for 42,000 variables, calling LS-DYNA only 7 times for each loading direction

Topology Optimisation Results

ONSULTING LTD

GENESIS / DYNA Sizing

- Vehicle BIW panel thickness optimisation performed for both static body torsion (GENESIS/NASTRAN load case) and side pole impact
- Torsional stiffness maintained whilst pole intrusion reduced from 600mm to 300mm.
- Required mass increase only 39kg
- Optimisation considered 59 panel thickness changes using on 10 function calls to LS-DYNA
- Method can consider multiple LS-DYNA impacts cases

dnsulting Ltd

Info Day Optimization,... 06/02/2008

Conclusions

- Optimization is a mature technology that works
- Optimization allows engineers to:
 - Reduce weight
 - Improve performance
 - Satisfy design requirements
- Optimization allows corporations to make the design process more automatic which allows to:
 - Reduce time to market
 - Improve quality
 - Innovate
- Optimization allows to improve the environment by:
 - Reduce fuel consumption
 - Reduce pollution
- GENESIS allows to improve structural designs

