Content:

- Motivation and targets for the development of the P-Dummies (P1.5 and P3.0)
- Planned Project workflow
 - Geometry scan
 - CAD data creation
 - Mesh creation
 - Model assembling and input data
 - Validation simulations
- Status quo and time schedule for the project

Motivation:

- Due to requests from child seat developers a project is launched
- Euro NCAP is using P1.5 and P3 on the rear seat
- The development of the Q-Dummy series is still in progress and the replacement of the P-Dummies by the Q-Dummies seems to be delayed

Targets for the model development:

- The models should be developed in a very short time window
- The costs for the model should be moderate
- Mass validated model
- No material tests should be done, if possible
- Only similar material data of other dummies are used
- The calibration test of the manual should be fulfilled
 - Joint stiffness adjustment
 - Static neck and lumbar spine test

Workflow – Geometry scan:

- The geometry creation is done by laser scanning
- The models were disassembled to a reasonable extend
- Scanned components:
 - Head

• Lumbar spine

Neck

- Pelvis
- Neck load cell
 Arms/Legs
- Torso

Workflow – CAD data creation:

- Target is not to get complete CAD data set of the models
- The step from STL data to meshed parts should be very short
- Important surfaces are joint together for meshing
- Highly concave sections or geometry are added by hand (ANSA, Hypermesh)
- Thus design of a few contours is not based on approximated data

Workflow – Mesh creation:

- The single components will be meshed by using a element length of 5-8mm
- All parts are meshed by solid elements covered with contact shells if needed
- The time step size will approximately be 1.0E-3 ms without mass scaling

Workflow – Model assembling and input data:

- The position of the single components are adjusted only for the FE-Model
- All joints will be modeled in the dummy and a tree-file for positioning is included
- Bones and inner plastic parts will be rigid
- For rubber and foam materials similar material of other models should be used
- Instrumentation like it is described in the manual

Workflow – Planed validation simulations:

- In a first step the calibration definitions of the manual are used to adjust the first behavior of the models
 - Joint stiffness under gravity load

Bending of neck and lumbar spine under gravity load

Status quo and time schedule for P3 Model:

- Geometry scan → finished
- Weighing of components → finished
- Geometry generation and meshing \rightarrow finished
- Model assembling → finished
- Including calibration information \rightarrow finished
- Stability check and documentation \rightarrow in progress

All additional offered tests are welcome to enhance the model quality!

The P1.5 Model will follow after finishing P3 Model and depending on customer interest.

