

LS-OPT[®] Overview and Preview of v4.2

Nielen Stander

LSTC, Livermore, CA

LS-OPT Infotag Ingolstadt, BRD October 20, 2010

Copyright © 2010 Livermore Software Technology Corporation

Contents

- LS-OPT Goals
- Main features and Methodology
- Examples
- Job distribution
- Preview of Version 4.2

LS-OPT Goals

- Provide a design environment for LS-DYNA users with the following capabilities and features:
 - Design Improvement and Optimization

Summary: Optimization

Metamodel-based Design Optimization

- Strategies
 - Single Stage: Fixed computational budget
 - Sequential: Maximize metamodel accuracy
 - Sequential with Domain Reduction: Converge to optimal region
- Direct Optimization
 - Genetic Algorithm (GA)
 - Particle Swarm Optimization (PSO) (v4.2)

Multi-Objective Optimization (Direct or Metamodel)

- NSGA-II (Non-dominated sorting Genetic Algorithm)
- SPEA-II (Strength Pareto Evolutionary Algorithm)
- SMPSO (Speed-Constrained Multi-objective Particle Swarm) (v4.2)

LS-DYNA Integration

- <u>Checking</u> of Dyna keyword files (*DATABASE_)
- <u>Importation</u> of design parameters from Dyna keyword files (*PARAMETER_)
- <u>Monitoring</u> of Dyna progress
- <u>Result</u> extraction of most Dyna response types
- LS-DYNA history plots in Viewer
- D3plot <u>compression</u> (node and part selection)
- <u>Outlier</u> information to FE mesh (LS-PrePost display)
- LS-DYNA *CASE supported. Responses can be tied to a particular <u>LS-DYNA Case</u>
- *<u>INCLUDE</u> and *INCLUDE_PATH files automatically parsed, copied and/or transmitted to cluster

Job distribution: LSTCVM Secure job proxy server

Metamodeling

Metamodel: Approximating the design

Copyright © 2010 Livermore Software Technology Corporation

What is a metamodel ?

An *approximation* to the design response, usually a simple function of the design variables. Is used instead of actual simulations during design exploration hence also called *surrogate*.

Metamodel Applications

Variable importance

- Linear surface fit to produce gradients
- Global Sensitivity Analysis using Sobol indices
- Optimization
 - Sequential metamodel construction/updating
 - Multiple objectives: Determine *Pareto*-optimal design set
- Reliability and Robustness
 - Probability of failure: Reliability
 - Standard deviation of a response: Robustness

Outlier Analysis

Locate sources of variation and noise

Metamodel Types in LS-OPT

Response Surface Methodology (RSM)

- <u>Polynomial</u>-based
- <u>Typically regional</u> approximation (especially linear)
- Feedforward Neural Networks (FF)
 - Simulation of a <u>biological network</u>, sigmoid basis function
 - Global approximation
- Radial Basis Function Networks (RBF)
 - Gaussian, Multi-quadric basis functions in a linear system
 - Global approximation
- Kriging
- User-defined
 - Dynamically linked (.so, .dll)

Sampling (schemes for point selection)

Space Filling

- Used with <u>FFNN + RBFN</u>
- Max. <u>Min. distance</u> between
 - new points
 - new points + fixed points
- Simulated Annealing

- ♦ D-Optimality
 - Used with polynomials

Other types

• Full factorial, Koshal, Central Composite, Latin Hypercube, User

Sampling in an irregular design space: Constrained Space Filling (v4.2)

Max. Min.
$$\| \mathbf{x}_{i} - \mathbf{x}_{j} \|$$
 s.t. $g_{j} \le 0$; $j=1,...,m$

♦ TNK Example

Ž

Ē

Constraints: $x_1^2 + x_2^2 - 1 - 0.1\cos(16\tan^{-1}(x_1/x_2)) \ge 0;$ $(x_1 - 0.5)^2 + (x_2 - 0.5)^2 \le 0.5$

Metamodels: Summary

Response Surface Methodology (RSM)	Feedforward Neural Networks (FF)	Radial Basis Function Networks (RBF)		
Polynomial basis functions	Simulation of a biological network. Sigmoid basis fns.	Local Gaussian or multi- quadric basis functions		
Regional approximation, requires iterative domain reduction	Global approximation	Global approximation		
Linear regression. Accuracy is limited by order of polynomial.	Nonlinear regression. Robustness requires committee (inner loop)	Linear regression within nonlinear loop. Cross- validation for high accuracy		
Very fast	Very slow. Responses processed individually	Fast		

Metamodel-based Optimization

Metamodel-based Optimization Strategies Space-filling point selection

Sequential with domain reduction

Copyright © 2010 Livermore Software Technology Corporation

Optimization Strategies

Single stage

- Suitable for a <u>fixed computational budget</u>
- All the points are determined in one stage, using Space Filling
- Highly suitable to create a <u>global metamodel</u>
- Sequential
 - Suitable for <u>maximizing metamodel prediction accuracy</u> using a Stopping criterion
 - Add Space Filling points in each iteration
- Sequential with domain reduction
 - Converges to a single optimum point (single objective)
 - Domain reduction in each iteration: all points within a <u>subregion</u>
 - Ideal for system identification

Design Improvement Cycle Simulation-based using Metamodel

Domain reduction: convergence

Example (Domain reduction)

Crash model

30 000 elements

Intrusion = 552mm

Stage1Pulse = 14.34g

Stage2Pulse = 17.57g

Stage3Pulse = 20.76g

Copyright © 2010 Livermore Software Technology Corporation

BIW model

18 000 elements

Torsional mode 1

Frequency = 38.7Hz

Design Formulation

Design Objective: Minimize (Mass of components)

Design Constraints: Intrusion < 552.38mm Stage1Pulse > 14.58g Stage2Pulse > 17.47g Stage3Pulse > 20.59g 41.38Hz < Torsional mode 1 frequency < 42.38Hz

Two Design Variables

Copyright C 2010 Livermore Software Technology Corporation

 $Copyright © \ 2010 \ Livermore \ Software \ Technology \ Corporation$

Domain reduction: more variables

Metamodel Comparison

Parameter Identification

- Solution Strating Waterial or System properties
- Methodology uses minimization of the differences between test and computed results
- Strategy
 - History-based Mean Squared Error
 - The target values can be specified in a history file and imported as a history. A single function computes the MSE

History-based Parameter Identification Test points + Computed curve

Ζ.

History-based Parameter Identification Mean squared error

Material Identification: Concrete Mat 159 11 parameters, 9 test types, 20 test sets

Par.	C00	Т00	PRS	UNX	C07	C14	C20	C34	C69
	UNC	DP	ISO-	UNX	TXC7	TXC14	TXC20	TXC34	TXC69
			comp						
G	•	•	•	•					
K	•	•	•	•					
R				•	•	•	•	•	•
X ₀			•						
W			•	•					
D ₁			•						
D ₂			•						
θ					•	•	•	•	•
λ					•	•	٠	•	•
β					٠	٠	٠	٠	•
η					•	•	•	•	•

Multiple cases, shared variables

Copyright \odot 2010 Livermore Software Technology Corporation

Material Identification: Optimization (10 iterations): Stress vs. Strain Results

Viewer: Computed Histories

Copyright © 2010 Livermore Software Technology Corporation

Example: Parameter Identification

- ♦ Used for calibrating material or system properties
- *Min.* Difference between *test* and *computed* results
- Sequential Response Surface Method (Linear)

Mapped Curve Matching (v4.2)

Curve Matching (v4.2)

Multiobjective
Discrete Optimization

- Discrete variables can have only <u>distinct</u> values, e.g. { 1.0, 2.0, 2.5, 4.5 }
- <u>Discrete and continuous variables can be used</u> <u>together</u>
- <u>Discrete sampling</u> can be combined with discrete optimization

Reliability/Robust Design

Summary: Probabilistic Analysis

Reliability and Robustness

- Reliability:
 - Calculate probability of failure
- Robust Design:
 - Standard Deviation of response
 - Consistent product performance
- Reliability-based Design Optimization (RBDO)
 - Incorporates <u>Reliability</u> and <u>Robustness</u> into design improvement
- Identify sources of uncertainty in the FE models: Outlier Analysis

Meta-Modeling and Stochastic Contributions

Günther, F., Müllerschön, H., Roux, W.J. LS-DYNA International Users Conference, 2004

Occupant Simulation Model

Uncertainty Design Variables

Standard deviation of x-displacements of each node (120 runs)

(a) Deterministic (Metamodel)

(b) Noise (Outliers)

Günther, F., Müllerschön, H., Roux, W.J. LS-DYNA International Users Conference, 2004

Multi-objective Optimization

Multi-objective Optimization

- Most engineering problems deal with multiple objectives e.g., cost, weight, safety, efficiency etc.
- Often conflicting requirements e.g., weight vs. efficiency
- No single optimal solution!
- Strategies
 - Direct Simulation
 - Higher cost
 - Metamodel-based
 - Accuracy depends on quality of metamodel
 - Can use <u>sequential updating</u> of metamodel to improve accuracy

Validation of GA Using Benchmarks

Unconstrained test problems

$$\begin{split} & \text{Minimize} \quad f_1(\vec{X}) = x_1; \quad f_2(\vec{X}) = g(\vec{X})h(g(\vec{X}), f_1(\vec{X})), \\ & \textbf{ZDT2}: g(\vec{X}) = 1 + 9(N-1)^{-1}\sum_{i=2}^N x_i; \\ & h(\vec{X}) = 1 - (f_1/g)^2; x_i \in [0,1]. \\ & \textbf{ZDT3}: g(\vec{X}) = 1 + 9(N-1)^{-1}\sum_{i=2}^N x_i; \\ & h(\vec{X}) = 1 - \sqrt{f_1/g} - (f_1/g)\sin(10\pi f_1); x_i \in [0,1]. \\ & \textbf{ZDT4}: g(\vec{X}) = 1 + 10(N-1) + \sum_{i=2}^N (x_i^2 - 10\cos(4\pi x_i)); \\ & h(\vec{X}) = 1 - \sqrt{f_1/g}; x_1 \in [0,1]; x_{2,3,\dots N} \in [-5,5]. \end{split}$$

Metamodel-based MOO/Robust design

Design criteria

Minimize

- Mass
- Acceleration
- <u>Standard deviation</u> of the intrusion (robustness)

Maximize

- Intrusion
- Time to zero velocity

9 stochastic thickness variables of main crash members.2 discrete + 7 continuous

Intrusion	<	721
Stage 1 pulse	<	7.5g
Stage 2 pulse	<	20.2g
Stage 3 pulse	<	24.5g

Probability of failure < 0.15

Stochastic input

Simulation statistics

- 640-core HP XC cluster (Intel Xeon 5365 80 nodes of 2 quad-core)*
- Queuing through LSF
- Total of 1000 crash runs
- Strategy: Single stage run
- Sampling scheme: Space Filling (MinMax distance) using 1000 points
- Metamodel: Radial Basis Function Network
- Optimization solver: NSGA-II to find Pareto Optimal Frontier
- * In collaboration with Yih-Yih Lin Hewlett-Packard Company

Parallel Coordinate Plot: 1000 Simulations

Global Sensitivity Analysis (Sobol indices)

Probability distributions of constraint values

Starting Design (infeasible)

Composite: Disp

Composite: Disp 10000 samples: Mean = 0.975 Standard Deviation = 0.00552 95% confidence interval in red

Composite: scaled_stage2_pulse 10000 samples: Mean = 1.05 Standard Deviation = 0.0123 95% confidence interval in red

Composite: scaled_stage2_pulse 10000 samples: Mean = 1.05 Standard Deviation = 0.0123

Composite: scaled_stage1_pulse 10000 samples: Mean = 1.05 Standard Deviation = 0.0178 95% confidence interval in red

Composite: scaled_stage1_pulse 10000 samples: Mean = 1.05 Standard Deviation = 0.0178

Composite: scaled_stage3_pulse 10000 samples: Mean = 1 Standard Deviation = 0.00476 95% confidence interval in red Composite: scaled_stage3_pulse 10000 samples: Mean = 1 Standard Deviation = 0.00475

Probability distributions of constraint values

Optimal Design (equal weights)

Composite: Disp Composite: Disp 10000 samples: Mean = 0.996 Standard Deviation = 0.00365 95% confidence interval in red

Composite: scaled stage1 pulse 10000 samples: Mean = 0.982 Standard Deviation = 0.0159 95% confidence interval in red

Composite: scaled stage1 pulse 10000 samples: Mean = 0.982 Standard Deviation = 0.016

Composite: scaled stage2 pulse 10000 samples: Mean = 0.962 Standard Deviation = 0.0113 95% confidence interval in red

Composite: scaled stage2 pulse 10000 samples: Mean = 0.962 Standard Deviation = 0.0112

Number of Samples

Number of Samples

Composite: scaled_stage3_pulse 10000 samples: Mean = 0.985 Standard Deviation = 0.00473

Composite: scaled stage3 pulse

10000 samples: Mean = 0.985 Standard Deviation = 0.00475 95% confidence interval in red

Integrated Pareto Front Exploration

Hyper-Radial Visualization

Self-Organizing Maps

2D sections of the design response

Example: Direct MDO/MOO

Direct MDO/MOO: Pareto Optimal Front History

Li G, Goel T, Stander N, Assessing the convergence properties of NSGA-II for direct crashworthiness optimization, 10th International LS-Dyna Conference, Jun 8-10, 2008, Detroit, MI.

Direct MOO Convergence Metrics (v4.2)

Optimized Hypervolume

- Measure the <u>volume</u> of the dominated portion of the objective space with respect to a <u>reference point</u>.
- In this study use the Nadir vector as reference point
- Hypercube between Ideal vector and Nadir vector is normalized
- HSO (Hypervolume by slicing objectives) algorithm used to compute volume efficiently. While *et al* (2005).

Direct MOO Convergence: Test Problems

MDO frontal crash/vibration

Frontal crash of a NHTSA vehicle 7 variables, 6 responses 30K+ elements 18K+ elements for modal analysis 90ms crash

Knee impact

Automotive panel impact with knee 11 variables, 7 responses 25K+ elements 400 ms crash

Hypervolume and Change in hypervolume

Copyright © 2010 Livermore Software Technology Corporation

Injury Criteria

- HIC (Head Injury Criterion)
- VC (Viscous Criterion)
- Chest Compression
- A3ms (Acceleration level for 3ms)
- Clip3m
- Clip3m (3nodes)
- Deformation/intrusion in local coordinates (to be merged into v4.1)
- MOC (Total Moment about Occipital Condyle)*
- Nij (Normalized Neck Injury Criterion)*
- NIC (Neck Injury Criterion)*
- Nkm (Neck criteria)*
- ♦ LNL (Lower Neck Load)*
- ♦ TTI (Thoracic Trauma Index)*
- ♦ TI (Tibia Index)*
- MTO (Total Moment)*
- * Available in Version 4.2

Reference: Crash Analysis Criteria Description, Arbeitskreis Meßdatenverarbeitung Fahrzeugsicherheit, Mai 2008

Frequency/Mode Tracking

NASTRAN Frequency with Mode tracking

- Modal Assurance Criterion (MAC)
 - Use correlation coefficient to match eigenvector
- Orthogonality criterion:

$$\max_{i} [(\boldsymbol{\varphi}_{r}^{T} \mathbf{M}_{r}) \boldsymbol{\varphi}_{i}]$$

r the reference mode

♦ Industry tested in a multidisciplinary automotive setting

Frequency/Mode Tracking

Modes corresponding to a twisting frequencyNASTRANLS-DYNA

Pre/Postprocessors

Morphing

- ANSA (BETA CAE Systems SA)
- DEP Meshworks (v4.2)
- Post-processing
 - MetaPOST (BETA CAE Systems SA)
 - GenEx (LS-OPT)
 - Generic Text file result extraction
 - Vector/history extraction (v4.2)

Simulation job distribution with LSTCVM

Linux

Secure connection to cluster: LSTCVM Proxy Server

- Popular execution mode: LS-OPT on <u>Windows</u> controlling/monitoring LS-DYNA on a <u>Linux</u> cluster
- ♦ LSTCVM avoids security risks associated with rsh/ssh
 - Administrator sets up restrictions:
 - allowable commands
 - allowable locations
 - allowable <u>users</u>
 - <u>no interactivity</u>
 - No login required \rightarrow no passwords transmitted
- ♦ File system can be <u>shared</u> or not (latter requires LS-OPT/*wrapper* executable for transmission)
- ♦ Interfaces to <u>queuing systems</u>
- ♦ Available with v4.1 (current production version)

Ed Helwig (Honda R&D) Trent Eggleston

LSTCVM: Secure job proxy

Process Modeling (v4.2, v5.0)

Outlook: Process modeling features

- File handling
 - Copying, Moving, Saving, Deleting, Renaming
- ♦ Job scheduling
 - Load balancing allow concurrent jobs where possible
- Enhanced usability
 - Stepping capability, enhancements to repair feature
- Backward compatibility

Process Modeling

- V4.2 : Limited functionality (process definition, load balancing, file handling) based on an extension of the current GUI – Spring 2011
- ♦ V5.0 : Redesigned GUI Winter 2011

Thank you for your attention!