

Erste Erfahrungen mit LS-OPT/Topology

Heiner Muellerschoen*, Nikolay Lazarov**, Katharina Witowski* *DYNAmore GmbH, **University of Karlsruhe

> DYNAmore GmbH Germany http://www.dynamore.de

Overview

Introduction

Topology Optimization for Crash

- Equivalent Static Load Method
- HCA Method Implementation in LS-OPT/Topology

Application Example

Conclusions

<section-header> Introduction Substitution Substitution

Non-Linear Optimization

Available Software Products: LS-OPT, Isight, Mode Frontier...

Non-linear / Parametric

- Parameterization of input files
- Shape/Sizing Optimization
- Possible for general nonlinear
- applications: Crash, Fluid Dynamics,
- Nonlinear Static/Dynamic

<section-header> Introduction Introduction

Non-Linear Optimization

Process Flow for Parametric Optimization - Simplified Representation

Introduction

Introduction

- Topology Optimization for Crash
 ESL
 - = HCA
- Application Example
- Conclusions

Linear Optimization

Available Software Products: Genesis, Optistruct, Tosca...

Non-Parametric

- Topology / Topometry Optimization
- Usually Linear FE-Problems
- Gradient based solvers many design variables > 1000000
- CAE-Applications: Static Loads,
 Frequency Analysis, NVH

Introduction

- Topology Optimization for Crash
 ESL
 - = HCA
- Application Example
- Conclusions

Linear Optimization

Usually Integrated FE-Solver

Introduction Introduction Society of the second seco

Topology Optimization for Crash

- For topology optimization each element is a design variable can be switched on/off
 - \rightarrow many variables
 - Can not be solved with LS-OPT (too many variables)
 - Can not be solved for crash with gradient based topology solvers like e.g. Genesis (strong non-linearities)
 - Two considerable approaches
 - Equivalent Static Loads Method ESLM
 - Hybrid Cellular Automata HCA

Equivalent Static Loads Method – ESLM

- An Equivalent Load is a load in a linear static system that makes an identical response to that in a nonlinear system
- Linear multi load case optimization for each time step t_i with equivalent static loads
- Has to be proven for large deformations such as buckling, folding
- Difficult to account for boundary conditions like reaction forces

References

- M.K. Shin, K.J. Park, G.J. Park (2007), "Optimization of Structures with Nonlinear Behavior Using Equivalent Loads," Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 1154-1167
 Kosaka, I. (Vanderplaats R&D) "Improvement of Energy Absorbation for the Side Member using
- Topography Optimization" LS-DYNA World Conf. 2010

Hybrid Cellular Automata – HCA

- Implemented in LS-OPT/Topology
- Gradient free, heuristic method
- Objective is to achieve a uniform internal energy density (IED) distribution

Reference

 T. Goel, W. Roux, N. Stander; "A topology optimization tool for LS-DYNA users: LS-OPT/Topology" 7th European LS-DYNA Conference, Salzburg, 2009

Implementation

LS-OPT/Topology

- Current Version is V1.0 released end of 2009
- For now available settings within the LS-DYNA model
 - Element type: eight-noded solid elements
 - Material model: *MAT_PIECEWISE_LINEAR_PLASTICITY
 - Contact types: *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE and *CONTACT_AUTOMATIC_SINGLE_SURFACE
- Objective is fixed in obtaining uniform internal energy density in the structure
- For now two types of constraints are available:
 - Mass fraction
 - Extrusion

👔 LS-OPT/Topology						
<u>F</u> ile ⊻iew <u>P</u> lot <u>I</u>	<u>H</u> elp					
Info Cases	Problem	Method	Run	View		
Design part ID 1		•				
Extrusion optimization						
Extrusion set ID						
1		-				
Mass fraction (b 0.15	etween 0.0	and 1.0)				

Problem Description

Optimization of a Crash Management System

Objectives are

to absorb the impact energy by plastic deformation without exceeding a specific force level

reduce the mass of the bumper

Problem Description / Settings

- Installation space for the bumper is defined by an extruded section of solid elements
- In total 565.800 solid elements for the initial model are used
- Mass fraction constraint is set to 15% of the initial (full volume) mass
- An extrusion constraint is introduced by specification of a set of solid elements

T LS-OPT/Topology							
<u>F</u> ile ⊻iew <u>P</u> lot <u>H</u> elp							
Info Cases Problem	Method	Run	View				
Design part ID 1	•						
Extrusion optimization Extrusion set ID							
Mass fraction (between 0.0	and 1.0)						

Result Topology Optimization

Result of the topology optimization after 30 iterations, which means 30 LS-DYNA simulations

Remodelling from Solids to Shells

Introduction of a second stage:

re-model the bumper with shell elements considering the results of the topology optimization, and determine optimal sheet thicknesses by constraint parameter optimization using LS-OPT

Optimization Problem for LS-OPT

- New optimization problem:
 - Objective is to minimize the mass
 - Subject to the constraint max (ContactForce(t)) < 130kN</p>
 - Variables: Sheet thicknesses of four parts
- Successive response surface method (SRSM) is applied in LS-OPT

<section-header> Optimization of a Crash Management System Introduction Introduction

Optimization Results

Result of SRSM Optimization - Convergence after 9 iterations each with 8 runs

Optimization Results

Result of SRSM Optimization

Conclusions

Optimization has been performed in two steps

- Topology optimization with LS-OPT/Topology
- Size optimization with LS-OPT
- Two step approach was necessary in order to consider a maximum force constraint and it also helps to refine the optimization on the basis of a shell design that represents a feasible design solution.
- Shape optimization on the shell design might be an additional option, but hasn't been addressed in this study

Thanks for your attention!