

Instability and Failure Prediction for Sheet Metal Forming Applications with LS-DYNA

André Haufe

Dynamore GmbH Industriestraße 2 70565 Stuttgart http://www.dynamore.de

Motivation

Technological challenges in the automotive industry

3

Technological challenges in the automotive industry

Lightweight steel/aluminium design! Can we predict failure modes (brittle, ductile, time delayed)? 600 0 200 400 800 1000 1200 1400 22MnB5 Zugfestigkeit R_m/MPa technische Spannung [kN/mm^2] **CP800** TWIP TRIP800 ZE340 Aural

technische Dehnung [-]

Motivation

5

Motivation Material behavior dependent on local history of loading

lnstitut Werkstoffmechanik

Closing the process chain: Standard materials / state of the art

Preliminary considerations for plane stress

8

Plane stress condition

Typical discretization with shell elements:

Definition of stress triaxiality:
$$\eta = \frac{p}{\sigma_{vm}} = -\frac{\sigma_1(k+1)}{3\sqrt{\left(1+(k-1)k\right)\sigma_1^2}} = -\frac{(k+1)}{3\sqrt{1+(k-1)k}}\operatorname{sign}(\sigma_1)$$

Haigh-Westergaard coordinates in principle stress space

A toy to visualize stress invariants

page 1:

(downloadable from the www.dynamore.se)

Crafting instructions

- Download the PDF-file
- · Print on thick piece of paper
- · Cut out where indicated
- Add four wooden sticks (15cm)
- Add some glue where necessary (engineers should find out the locations without further instructions – all others contact their local distributor)
- Have fun!

A toy to visualize stress invariants

(downloadable from the www.dynamore.se)

Crafting instructions

• Page 2 of the set may be added for further clarification of the triaxiality variable.

Final shape of toy

page 2:

Plane stress parameterised for shells

Triaxiality
$$\eta = \frac{p}{\sigma_{vm}} = -\frac{\sigma_1(k+1)}{3\sqrt{(1+(k-1)k)\sigma_1^2}} = -\frac{(k+1)}{3\sqrt{1+(k-1)k}}\operatorname{sign}(\sigma_1)$$

Bounds:

How to define the accumulation of damage? A comparison of model approaches

Investigation of failure criteria for the following case:

- Plane stress: $\sigma_3 = 0$
- Small elastic deformations: $\mathcal{E}_1 \approx \mathcal{E}_{p1}$ and $\mathcal{E}_2 \approx \mathcal{E}_{p2}$
- Isochoric plasticity: $\varepsilon_3 \approx \varepsilon_{p3} = -\varepsilon_{p1} \varepsilon_{p2}$
- Proportional loading: $\sigma_2 = a\sigma_2$

$$\sigma_{2} = a\sigma_{1}$$
$$\varepsilon_{p2} = b\varepsilon_{p1}$$
$$a = \frac{1+2b}{2+b}$$

How to define the accumulation of damage? A comparison of classical model approaches

Some typical loading paths

		$a = \frac{\sigma_2}{\sigma_1}$	$b = \frac{\varepsilon_{\mathfrak{p}2}}{\varepsilon_{\mathfrak{p}1}}$	$\eta = \frac{p}{\sigma_{\rm em}}$
Uniaxial stress (tension)	ţ	0	-0.5	-0.3333
Biaxial stress	-	1	1	-0.6666
Uniaxial tension laterally confined		0.5	0	$-0.57735 = -\frac{1}{\sqrt{3}}$
Pure shear	- - -	-1	-1	0
Uniaxial stress (compression)		\sim	-2	0.3333

How to define the accumulation of damage ? A comparison of classical model approaches

Some typical loading paths

16

Failure models in the plane of principal strain

epsilon-2

Failure models in the plane of major strain vs. b

Failure models in the plane equivalent plastic strain vs. b

Failure models: equivalent plastic strain vs. triaxiality

Johnson-Cook criterion (Hancock-McKenzie)

Parametrized for 3D stress space

Lode-angle: Extension- and Compression test

View not parallel to hydrostatic axis

DYNA 24

Invariants in 3D stress space Failure criterion extd. for 3D solids

25

Failure Prediction for UHSS: Adding some damage

Closing the process chain: Standard materials / state of the art

Produceability to Serviceability: Modular Concept

Modular Concept:

- Proven material models for both disciplines are retained
- Use of one continuous damage model for both

Produceability to Serviceability: Modular Concept Current status in 971R5

Ebelsheiser, Feucht & Neukamm [2008] Neukamm, Feucht, DuBois & Haufe [2008-2010]

29

GISSMO Failure criterion for plane stress and extd. for 3D solids

• For shells (2D with the assumption of plane stress) triaxility and Lode angle depend on each other.

 \rightarrow fracture strain is a function of the triaxiality

- For Solids (3D) both the Lode angle and triaxiality are independent
 - \rightarrow fracture strain is a function of triaxiality and Lode angle

GISSMO Failure criterion extd. for 3D solids

GISSMO Failure criterion extd. for 3D solids

Experimental data 1/3 2/3 [Experimental data

by Wierzbicki et al.]

Xue

Hutchinson

Gurson std.

MORE

33

GISSMO - a short description Ductile damage and failure

Failure Curve Damage Evolution 0.6 $\dot{D}_f = \frac{n}{\varepsilon_f} D_f^{\left(1 - \frac{1}{n}\right)} \dot{\varepsilon}_p$ 0.5-0,9 Johnson-Cook О 0,8 GISSMO n=2 0,7 **D** 0,6 - Gurson f/f⊧ ; 0,5 **ພັ** 0.3 0,4 0,3 Mises 0,2 0,1 0.2 Gurson 0.1 0,3 0,5 0.6 0,4 ε_^p **GISSMO** 0.1-Crash Forming Damage overestimated for linear damage 0.0 accumulation 0.2 0.4 0.6 0.8 0¦0 1.0 triaxiality Wierzbicki et al. (and many more...) / Neukamm, Feucht, DuBois & Haufe [2008-2011]

34

GISSMO – a short description Engineering approach for instability failure

Neukamm, Feucht, DuBois & Haufe [2008-2011]

MORE

GISSMO – a short description

Inherent mesh-size dependency of results in the post-critical region Simulations of tensile test specimen with different mesh sizes

GISSMO – a short description

Generalized Incremental Stress State dependent damage MOdel

GISSMO vs. Gurson vs. MAT_24/81 **Comparison of experiments and simulations**

Institut Werkstoffmechanik

Process chain with GISSMO

Summary

Features of GISSMO:

- Use of existing material models and respective parameters
- Constitutive model and damage formulation are treated separately
- Allows for the calculation of pre-damage for forming and crashworthiness simulations
- Characterization of materials requires a variety of tests
- Offers features for a comprehensive treatment of damage in forming simulations and allows simply carrying aver to crash analysis

Thank you for your attention!

