

AIF - Zebris cooperation project

A variable finite element model of the human masticatory system for different loading conditions

Simon Martinez

Advisors:

Prof. Dr.-Ing Karl Schweizerhof Dr. rer. nat. Jürgen Lenz Prof. Dr. med. dent. Hans J. Schindler

RESEARCH GROUP BIOMECHANICS INSTITUTE OF MECHANICS

Slide 1/38

Outline

- 1. Motivation: AIF Zebris cooperation project goal and scope
- 2. The different components of the masticatory system:
 - Brief description
 - Modelling: Overview over state of the art
- 3. Generation of the finite element model: Workflow and major challenges
- 4. Visualization of results for various loading situations
- 5. Summary

Motivation

AIF - Zebris cooperation project

Development of a system to capture the biting/chewing function of the jaw under occlusal forces to optimize dentures manufactured with CAD/CAM and to improve dental implant planning

Goal

Partners

- Zebris medical GmbH
- Ernst Moritz Arndt Universität Greifswald
- Karlsruhe Institut für Technologie (KIT)
 - Ingenieurbüro Steinman & Reinke

Creation of a variable finite element model to determine the deformation of the jaw and the displacement of the teeth under functional loads

The masticatory system - TMJ Temporomandibular joint (TMJ)

Composed of:

- Mandibular condyles
- Articular surface of the temporal bone
- Capsule
- Articular disc
- Ligaments
- Lateral pterygoid muscle
- Configuration varies from person to person
- Lateral pterygoid muscle: Upper head always inserts on the condyle, in 60% of specimens it also inserts on the disc-capsule complex

Slide 4/38

The masticatory system - Muscles

www.biodigitalhuman.com

Principal muscles responsible for opening (upper row) and closing (lower row) the jaw

Digastricus

Lateral pterygoid

Medial pterygoid

Temporalis

Masseter

Slide 5/38

The masticatory system - PDL Periodontal ligament (PDL)

- Connective tissue that attaches the teeth to the alveolar bone.
- Responsible for tooth mobility
- Average thickness of 0.25 mm.

State of the art - TMJ

J.H Koolstra, T.M.G.J van Eijden (2005)

 Articular disc modeled with an hyperelastic model

Perez de Palomar et al. (2006)

- Articular disc modeled with a poroelastic (anisotropic) material model.

*Images taken from corresponding papers

State of the art - Muscles

J.H Koolstra, T.M.G.J van Eijden (2005)

Muscles fibers are modeled with the Hill muscle model, tendon tissue is either incorporated or modeled separately.

Slide 8/38

State of the art – PDL (Periodontal ligament)

Slide 9/38

Creation of the finite element model

Boundary conditions

- Muscle forces
- Constraints
- Temporomandibular joint
- Stabilization of analysis by considering dynamics
- Computationally impractical to model the process in its natural time period

- Experimental data are limited
- Strong variance of parameters between different subjects

Segmentation

Software: Mimics 14 (Materialise, Belgium, 2010)

Geometry is obtained by outlining the contour of the desired object in each slide.

Slide 12/38

Segmentation

Software: Mimics 14 (Materialise, Belgium, 2010)

Grayscale value of the different components is very similar

Automatic segmentation results in a single part

Slide 13/38

Segmentation

Software: Mimics 14 (Materialise, Belgium, 2010)

Requirement

Geometries of the components must be separated for material assignment and for motion control

Geometry must be manually segmented

Dentin Cortical bone

Slide 14/38

Geometry treatment

Software: Geomagic Studio12 (Geomagic Inc, USA, 2010)

Steps to create a geometry useful for FE modeling

- 1. Repairing artificial holes and spikes
- 2. Creating contour lines to define major surfaces

Geometry treatment

Software: Geomagic Studio12 (Geomagic Inc, USA, 2010)

Steps to create a geometry useful for FE modeling

- 3. Placing patches over the major areas
- 4. Defining NURBS over the patches

Creation of soft tissue – Periodontal ligament

- 1. Alveoles are created with expanded teeth
- 2. Normal sized teeth are placed
- 3. Void space defined as PDL

Slide 17/38

Creation of soft tissue – Temporomandibular joint

Previous geometries of the disc were not adequate

Current geometry of the TMJ

The articular disc and cartilage model were obtained through an iterative (manual) process

Model discretization

Software: Hypermesh 11 (Altair, USA, 2012)

Geometry presents major challenges for a hexahedral mesh

Therefore

Model is currently meshed mostly with tetrahedral elements

Finite element software

- Initial simulations of individual components were performed in ANSYS 14 as non linear static problems using a implicit method.
- Convergence was a major problem in the complete model.
- Explicit time integration is more efficient for highly nonlinear static problems, especially for three-dimensional problems involving contact and large deformations.
- LS-DYNA explicit solver showed a great reduction in computational time (total number of elements > 1.8 million for the full model) and avoids convergence problems altogether. Artifacts arising from a dynamic approach must be avoided.

Model discretization

Software: LS-DYNA R6.1 (LSTC, USA, 2013)

Slide 21/38

Model discretization

Slide 22/38

Total number of elements > 900.000 (symmetric model)

Slide 23/38

Material assignment

Material	Constitutive law	Source of material parameters
Corticalis	Linear elastic	CES Edupack 2012
Spongiosa	Linear elastic	CES Edupack 2012
Dentin	Linear elastic	CES Edupack 2012
Articular disc	Viscoelastic (Mooney Rivlin)	Koolstra et. al
Cartilage	Hyperelastic (Mooney Rivlin)	Koolstra et. al
PDL	Hyperelastic (1 st order Ogden)	*
Silicon (test bolus)	Viscoelastic	-

* Large discrepancies in the literature

Slide 24/38

PDL hyperelastic model

Axial load

Horizontal load

Material parameters were calibrated to obtain realistic force displacements

1st Order Ogden parameters:

Slide 25/38

Slide 26/38

Muscle forces

Passive
$$\longrightarrow$$
 $FP = 0.0014 \exp\left\{6\frac{Ls(t) - 2.73}{2.73}\right\}$ *J.H Koolstra,
T.M.G.J van Eijden (1997)

Slide 27/38

Constraints – fixed boundaries

Slide 28/38

Temporomandibular joint - function

Sagittal View*

Disc and Attachments*

Medial

Coronal View*

*Vincent P. Willard (2003)

Attachments of the capsule keep the disc attached to the fossa and the condyle

Slide 29/38

Temporomandibular joint - motion

"Initial phase of an opening movement is primarily a rotation that always progresses with a translational component."

Color atlas of dental medicine: TMJ Disorders and Orofacial Pain (2002)

Slide 30/38

derive from literature

Experimental data* of retrodiscal tissue: uniaxial tests only

the CT scan

Attachment tissue modeled with trusses

Temporomandibular joint

Joint capsule is not visible in

Geometry is too complex to

Slide 31/38

*Tanaka E. et al. (2003)

Results - Opening

Opening gap of 30 mm limited by lack of movement of the hyoid bone. *Great effort was taken to obtain a realistic motion*

Slide 32/38

Results – Jaw forces during opening

Forces in the joint match those found in the literature

Slide 33/38

Results – biting a test bolus

Muscle activation and resulting biting and joint forces in agreement with Rues et al. (2009)

Slide 34/38

Results – biting a test bolus - validation

Slide 35/38

Results – biting a test bolus (asymmetric)

Muscle activation and resulting biting and joint forces again in agreement with Rues et al. (2009)

Slide 36/38

Summary

- Model shows realistic behavior during opening and closing motions
- Stresses and reaction forces show good agreement with previous works found in the literature
- Computational requirements:

#CPU	Problem time [ms]	# Elements	#DOF	Computational time [h]
16	180	920.000	582.000	30
32	180	920.000	582.000	22
16	180	1.840.000	1.164.000	60

Current model simplifications / limitations (Not essential for this project)

- Anisotropic behavior of the disc not implemented
- Capsule and ligaments not modeled
- Hyoid bone remains in a fixed position during jaw movement
- Problem time: 250 ms Natural time: 500 ms

RESEARCH GROUP BIOMECHANICS

THANK YOU FOR YOUR ATTENTION

Previous work by the Institute of Mechanics on teeth and jaw modeling

- Magnitude of forces fundamental to determine optimal muscle activation
- Existing TMJ used as an initial guiding model

Model discretization

Software: LS-DYNA R6.1 (LSTC, USA, 2013)

Hexahedral elements

Slide 40/38

Tetrahedral elements