

converting 3d images into numerical models

### Simpleware:

### Converting 3D Images into Models for Visualisation, Measurement and Computational Simulation

Dr Ross Cotton (Senior Application Engineer) r.cotton@simpleware.com



### **Introduction to Simpleware**

# Simpleware: The Company

Developers of industry-leading software solutions for the visualisation and analysis of 3D image data.

- Founded in the UK in 2000
- Key Pioneers in image-to-mesh techniques to generate simulation ready models of highly complex structures
- Worldwide customer base supported by a global sales channel
- Winner of:
  - Queen's Award for Enterprise in Innovation 2012
  - Queen's Award for Enterprise in International Trade in 2013
  - Institute of Physics' (IOP) Innovation Award 2013





### Simpleware Converts 3D Images









...into 3D Surface and Volume Meshes for Visualization, Measurement and Multi-part Simulation

### The Simpleware Solution

- Software/Services for the conversion of 3D images into visualisation AND analysis ready, multi-part models
- Can be used for...
  - Any stacked image set
  - Arbitrarily complex topologies
  - Multi-part structures
- Allows the user to...
  - Visualise and Measure
  - Inspect and Assess
  - Send for 3D printing
  - Export to all major CAD/FE/CFD packages for analysis







# Simpleware's Applications

Biomedical-Biomechanics

Orthopaedics, Implant Design/Analysis, Physiological Flows, Cardiovascular, Cell Mechanics, Consumer Products...

### Materials, Composites, Geotechnical

Non-Destructive Testing, Characterisation, Analysis, Visualisation, Pore-Scale Flow, Micro-Macro structural Property Prediction, Weld Integrity, Corrosion, Crack Propagation...

#### Reverse Engineering

Legacy Parts-CAD or Physical, Components of Interest, As-Built to As-Designed Comparison...

#### Natural Sciences

Archaeology, Palaeontology, Functional Morphology...

#### Almost anything that can be scanned can be modelled!









### **Software overview**

### Software Overview

*Visualisation, quantification and model/mesh generation from 3D images:* 

- Visualise 3D image data
- Image processing tools
- Measure/Quantify
- Rapid Prototyping (RP)
- Finite Element Analysis (FEA)
- Computer Aided Design (CAD)
- Computational Fluid Dynamics (CFD)



isualisation (isualisation)/isualisation

Measure & Surface quantify mesh FE/( me

FE/CFD mesh NURBS CAD CAD integration

Scripting

#### Image import

- CT and MRI
- microCT and nanoCT
- Ultrasound
- Confocal Microscopy
- Scanning Electron Microscopy
- Serial images from sectioning

#### **Data manipulation**

Rescale, resample, crop, align

### Image filters

- Noise reduction
- Smoothing
- Metal artefact reduction





Segmentation Visualisation

Measure & quantify Surface mesh

FE/CFD mesh NURBS CAD CAD integration

Scripting

#### Segmentation tools

- Paint, paint with threshold
- Threshold and floodfill
- Confidence connected region growing
- Magnetic lasso

### **Mask filters**

- Morphological,
- Cavity fill
- Island removal
- Smoothing/ noise reduction

### 3D editing

- Apply filters on local ROI
- Delete, smooth, erode, close etc...







Image processing Segmentation Visualisation Measure & Surface mesh FE/CFD NURBS CAD CAD integration Scripting

#### Volume rendering

- Very fast and memory efficier
- GPU rendering supported
- Interactive histogram
- Presets and "Auto guess"

#### Mask rendering

- Renders segmented mask(s)
- Clipping and opacity settings

#### **Common options**

- Background colours
- Lighting
- 3D stereo rendering modes
- $\rightarrow$  Or combine both!





#### Interactive tools

- Points, distances, angles
- Recorded with project file
- Histogram and profile line
- Landmarking for musculoskeletal simulations

#### Image statistics framework

- Extensive range of measurements
- Volume fractions, surface area, region centre, object orientation ...
- Build and share templates
- Custom functions
- Statistics within ROIs

![](_page_12_Figure_13.jpeg)

Image processing Segmentation Visualisation Measure & Surface FE/CFD mesh NURBS CAD CAD integration

#### Surface mesh generation

- Volume and topology preserving
- Automated and robust
- Guaranteed watertight
- Automatic handling of multiparts
- Feature based adaptation
- User defined refinement

![](_page_13_Picture_9.jpeg)

Scripting

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_11.jpeg)

Image<br/>processingSegmentation VisualisationMeasure &<br/>quantifySurface<br/>meshFE/CFD<br/>meshNURBS CADCAD<br/>integrationScripting

#### Volume mesh generation with +FE module

- Volume and topology preserving
- Automated and robust
- Choice of algorithms
- Automatic handling of multiparts
- Feature based adaptation
- User defined refinement
- Mesh optimisation
- Contacts, node sets, prism layers for CFD
- Curved quadratic tet elements
- Tet to hex converter
- Greyscale material mapping

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_14_Picture_16.jpeg)

Image processing Segmentation Visualisation Measure & Surface results and resu

#### NURBS CAD Model generation with +NURBS module

- Automated NURBS patch fitting
- Choice of algorithms
- Highly accurate conversion
- Export to IGES

#### CAD ready models for:

- CAD
- FE and CFD applications
- Subject specific device design

![](_page_15_Picture_11.jpeg)

Image

processing

CAD integration with +CAD module

Measure &

quantify

Surface

mesh

FE/CFD

mesh

- Fast and easy-to-use tools to combine CAD with image data
- Import CAD files (STL,IGES etc.)
- Interactive positioning

Segmentation Visualisation

- Constrained positioning
- Robust Boolean operations
- Internal structures for RP

#### **Applications:**

- Medical device integration for simulation
- Comparing CAD to image

![](_page_16_Picture_11.jpeg)

NURBS CAD

CAD

integration

Scripting

| Image<br>processing | Segmentation | Visualisation | Measure & quantify | Surface<br>mesh | FE/CFD<br>mesh | NURBS CAD | CAD<br>integration | Scripting |
|---------------------|--------------|---------------|--------------------|-----------------|----------------|-----------|--------------------|-----------|
|---------------------|--------------|---------------|--------------------|-----------------|----------------|-----------|--------------------|-----------|

#### **Scripting tools**

simpleware

- All operations can be scriptable
- Python, C#, Java, Visual Basic
- API documentation

#### How scripting can help:

- Automate repeatable operations
- Create wizards
- Run scripts from command line
- Build your own plugins
- Macro recording
- Convert log entry to script

![](_page_17_Figure_12.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

### **Key Features**

### Smoothing – Topology Preservation

 Accuracy of 3D model from segmentation to smooth 3D surface/volume mesh

![](_page_20_Picture_3.jpeg)

Traditional non-topology preserving smoothing

Simpleware topology preserving smoothing

### Smoothing – Volume Preservation

 Accuracy of 3D model from segmentation to smooth 3D

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

### Automatic handling of multiparts

- Smoothing and meshing multiple segmented regions
- Important to maintain interfaces from segmentation to model

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

# Automatic handling of multiparts

 Traditional part-by-part approaches risk poor meshing, gaps/overlaps, non conforming interfaces.

![](_page_23_Picture_3.jpeg)

Traditional approach Build parts one by one

![](_page_23_Picture_5.jpeg)

### Simpleware algorithms

## Adaptive Mesh Controls (+FE Free)

Compound coarseness

![](_page_24_Picture_3.jpeg)

Elements = 973kNodes = 190kAspect Ratio = 1.5 / 5.8

### Adaptive Mesh Controls (+FE Free)

Compound coarseness (-50 = coarse, 0 = ScanFE Grid surface, +50 = fine)

![](_page_25_Picture_3.jpeg)

-50

Elements = 30k Nodes = 7k Aspect Ratio = 1.7 /4.8

![](_page_26_Picture_0.jpeg)

# Case study

![](_page_27_Picture_2.jpeg)

 In vivo MRI scan of 26 year old male

#### In collaboration with: $\operatorname{ARUP}$

![](_page_28_Picture_2.jpeg)

- In vivo MRI scan of 26 year old male
- Segmentation
  - Threshold, floodfill and filters
  - Segmentation of 12 structures

#### In collaboration with: $\operatorname{ARUP}$

![](_page_29_Picture_2.jpeg)

- In vivo MRI scan of 26 year old male
- Segmentation
  - Threshold, floodfill and filters
  - Segmentation of 12 structures

#### In collaboration with: $\operatorname{ARUP}$

![](_page_30_Picture_2.jpeg)

- In vivo MRI scan of 26 year old male
- Segmentation
  - Threshold, floodfill and filters
  - Segmentation of 12 structures
- Multi-part mesh generation
  - 12 structures meshed simultaneously
  - Multipart smoothing with conforming interfaces

#### In collaboration with: ARUP

![](_page_31_Picture_2.jpeg)

- In vivo MRI scan of 26 year old male
- Segmentation
  - Threshold, floodfill and filters
  - Segmentation of 12 structures
- Multi-part mesh generation
  - 12 structures meshed simultaneously
  - Multipart smoothing with conforming interfaces

#### In collaboration with: ARUP

![](_page_32_Picture_2.jpeg)

- In vivo MRI scan of 26 year old male
- Segmentation
  - Threshold, floodfill and filters
  - Segmentation of 12 structures
- Multi-part mesh generation
  - 12 structures meshed simultaneously
  - Multipart smoothing with conforming interfaces
- FE analysis in LS-Dyna
  - Boundary conditions and loads
  - Response to blast wave and to dynamic loading conditions

#### In collaboration with: ARUP

![](_page_33_Figure_2.jpeg)

.000000000

z

#### In collaboration with: **ARUP**

![](_page_34_Picture_2.jpeg)

- Import helmet components
  - Outer Shell
  - Pads
  - Face guard
- Positioning
  - Initially Interactively with 3D view
  - Then fine tuning through specified rotations and translations
- Combined models
  - Football helmet
  - Military helmet

![](_page_35_Picture_2.jpeg)

- Import helmet components
  - Outer Shell
  - Pads
  - Face guard

### Positioning

- Initially Interactively with 3D view
- Then fine tuning through specified rotations and translations
- Combined models
  - Football helmet
  - Military helmet

![](_page_36_Picture_2.jpeg)

- Import helmet components
  - Outer Shell
  - Pads
  - Face guard

### Positioning

- Initially Interactively with 3D view
- Then fine tuning through specified rotations and translations
- Combined models
  - Football helmet
  - Military helmet

![](_page_37_Picture_2.jpeg)

- Import helmet components
  - Outer Shell
  - Pads
  - Face guard

### Positioning

- Initially Interactively with 3D view
- Then fine tuning through specified rotations and translations
- Combined models
  - Football helmet
  - Military helmet

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

## Reliable, Robust and Accurate

- Established/tried & tested commercial code
- Efficient, fast, stable
- Code based on combination of proprietary algorithms and published literature
- Rapid and responsive development
- Guaranteed generation of watertight surfaces
- Fully automated surface/volume meshing
- High mesh quality suitable to direct use in FE/CFD

Visit <u>www.simpleware.com</u> to get a 30 day trial version Includes tutorials and example data Also includes full technical support