DYNAmore GmbH LS-DYNA

Information Day: Multiphysics Applications using LS-DYNA Stuttgart, 4 March 2013

DYNAmore - The Company

- Countries and Main Offices
 - Germany headquarters in Stuttgart
 - Sweden headquarters in Linköping
 - Switzerland headquarters in Zurich
- Further Offices
 - Ingolstadt
 - Dresden
 - Langlingen (Wolfsburg)
 - Berlin
 - Gothenburg
- On-site Offices
 - Sindelfingen
 - Untertürkheim
 - Weissach
 - Ingolstadt
 - Gothenburg

Stuttgart [Headquarters]

DYNAmore – The People

Who we are

- In total 80 people
- Civil and mechanical engineers, mathematicians, computer scientists,...
- The employees are from 13 different countries
- The percentage of female staff is above 25 %
- The fluctuation of employees is below 2%
- The company is financially stable since its foundation

DYNAmore - The Products

Software

- LS-DYNA
- LS-OPT und LS-TASC
- LS-PrePost
- eta/DYNAFORM
- FEMZIP
- Digimat

Models

- FAT/PDB dummy models
- Humanetics dummy models
- THUMS human model
- Arup barrier and impactor models
- Daimler/Porsche impactor models
- LSTC models

DYNAmore - The Services

software

training

engineering

development

Software

- European master distributor for LSTC (w/o UK and France)
- about 10000 maintained LS-DYNA licenses
- Engineering
 - Benchmarking
 - Pilot projects
 - On-site engineering
 - Consulting
- Development
 - Dummy models
 - Material models
 - Method development
- Training
 - Seminars
 - Conferences
 - Coaching on site

History of LS-DYNA and DYNAmore

- 1976: John Hallquist develops DYNA3D at Livermore Laboratories
- 1988: John Hallquist founds LSTC, DYNA3D becomes LS-DYNA3D
- 1988: Prof. Schweizerhof + co-workers start with crash simulations in Germany
- 2001: DYNAmore is founded
- 2011: DYNAmore acquires ERAB Nordic,
- 2011: DYNAmore assigned as master distributor

Multiphysics and Coupled Problems

- Coupled Multi-Field Problems
 - The individual field equations are also functions of the other field
 - Example: velocity and pressure fields for incompressible viscous flow
- Coupled Multi-Physics Problems
 - Multiple physical models or phenomena are handled simultaneously
 - Different discretization techniques are used for individual subproblems
 - Example: particle systems (DEM) interact with structures (FEM) on the same or multiple scales
 - Field variables represent different but interacting physical phenomena
 - Example: thermoelectricity combining heat conduction and electrodynamics

Park & Felippa: Partitioned analysis of coupled systems. In Belytschko & Hughes (eds.): Computational Methods for Transient Analysis. Amsterdam 1983, pp. 157–219

Coupled Problems

- Dynamic Interaction of physically or computationally heterogeneous components
- Interaction is multi-way

Partitioning or splitting of a coupled problem

Classification of the Coupling

- Volume Coupled
 - Discretized field variables (DOF) are coupled on the same domain
 - Weak coupling
 - Thermo-mechanical problem
 - $\hfill\square$ displacement & thermal field
 - Strong coupling
 - Incompressible fluid flow
 - velocity & pressure field
 - Electro-magnetical problem
 - electric field & magnetic flux density
 - Porous-media problems
 - displacement & pressure field
 - displacement, pressure & concentration fields

- Surface Coupled
 - Discretized field variables (DOF) are coupled at an interface surface
 - Weak coupling
 - Mechanical contact
 - Heat transmission
 - Structural sound emission
 - Fluid-structure interaction (fluid/solid density ratio ≠1)
 - Strong coupling
 - Fluid structure interaction (fluid/solid density ratio close to 1)

- Solution of Coupled Problems
 - Spatial semi discretization
 - Finite-Element Method (FEM)
 - Finite-Difference Method (FDM)
 - Finite-Volume Method (FVM)
 - Arbitrary Lagrange Eulerian (ALE)
 - Boundary-Element Method (BEM)
 - Discrete-Element Method (DEM)
 - Smoothed Particle Hydrodynamics (SPH)
 - Element-Free Galerkin (EFG)
 - Time integration
 - Implicit and explicit time-stepping schemes
 - Monolithic or direct approach
 - the problem is treated monolithically
 - $\hfill\square$ all components are integrated with the same scheme
 - Partitioned or iterative approach
 - system components are treated as isolated entities
 - separate time integration with arbitrary schemes
 - subcycling to account for different time scales
 - prediction, substitution, and synchronization techniques apply

Multiphysics in LS-DYNA

One-Code Strategy for LS-DYNA

"Combine the multi-physics capabilities into one scalable code for solving highly nonlinear transient problems to enable the solution of coupled multi-physics and multi-stage problems" -- John Hallquist (2012)

Todays Presentations

- CFD Solvers and Interaction possibilities in LS-DYNA R7
 - I. Çaldichoury (LSTC)
- Interaction of bonded and loose particles in LS-DYNA
 - N. Karajan (DYNAmore)
- EM field solver and its thermo-structural coupling in LS-DYNA R7
 - I. Çaldichoury (LSTC)
- Advanced metalforming simulation using a thermomechanicsl coupling including phase changes
 - D. Lorenz (DYNAmore)

