

Advanced Metalforming Simulations using a thermomechanical coupling including phase changes

David Lorenz DYNAmore GmbH

- **1.** Hot Stamping and Presshardening of Boron Steel
- 2. Hot Stamping Feasibility Studies
- **3.** Presshardening Cooling Simulations
- 4. Prediction of Microstructure in Presshardening
- 5. 2-stage forming of intermediate induction heat treated aluminum
- **6.** Forming of stainless steel

Hot Stamping of Boron Steel

Transfer

Positioning

Hot forming & Quenching

Hot Stamping of Boron Steel

Hot Stamping of Boron Steel

High predictive quality of a simulation requires detailed consideration of essential effects

- Which are essential effects affecting simulation accuracy?
- How are these effects considered in our models?

Simulation requires efficient model approaches to be an effective enginering tool

- Simple tool modeling without loss in accuracy?
- Numerical measures to speed up simulations?

Accuracy of forming simulations strongly depends on the consideration of temperature dependent viscoplasticity

Temperature dependent material properties require an accurate calculation of the inhomogenuous blank temperature during the forming operation

Tool surface temperature directly affects the heat flux from blank to the die

NA

Tool surface temperature directly affects the heat flux from blank to the die

INA

$$\dot{q}_{cont} = h_{cont} \cdot \left(T_{blank} - T_{tool}\right)$$

*CONTROL_SHELL TSHELL=1
+
*CONTROL_CONTACT ITHOFF=1
tool thickness for different materials
1.2367 $\lambda = 28 \text{ W/mK} \text{ d}_{tool} = 10.0 \text{ mm}$
HTCS-117 $\lambda = 41 \text{ W/mK} \text{ d}_{tool} = 12.0 \text{ mm}$
HTCS-130 $\lambda = 62 \text{ W/mK} \text{ d}_{tool} = 16.0 \text{ mm}$

Accurate wrinkling analysis

- wrinkling control in areas of unsupported deformation is a difficult task
- Wrinkless should **flatten** during die closing

Accurate wrinkling analysis

- wrinkling control in areas of unsupported deformation is a difficult task
- Sheet doubling during wrinkle deformation is an important failure mode in hot stamping
- Prediction of this failure is impossible without geometrical representation of wrinkles

Hot Stamping of a B-Pillar

Hot Stamping of a B-Pillar: Temperature Results

DYNA

MORE

Umformen Umformen Fringe Levels Fringe Levels Time = 0,#nodes=55571,#elem=57882 Time = 0.0080712,#nodes=89689,#elem=90573 Contours of Temperature, maxima Contours of Temperature, maxima 8.000e+02 8.000e+02 min=670.628, at node# 9004565 min=663.392, at node# 9022320 7.900e+02 _ 7.900e+02 max=816.039, at node# 9004162 max=809.314, at node# 9020516 7.800e+02_ 7.800e+02_ 7.700e+02 7.700e+02 _ 7.600e+02 7.600e+02 7.500e+02 7.500e+02_ 7.400e+02_ 7.400e+02 7.300e+02_ 7.300e+02 _ 7.2000+02 7.200e+02 _ 7.100e+02 7.100e+02 7.000e+02 7.000e+02_ Umformen Umformen Fringe Levels Time = 0.019814,#nodes=117763,#elem=118989 **Fringe Levels** Time = 0.029794,#nodes=123761,#elem=125073 Contours of Temperature, maxima 8.000e+02_ Contours of Temperature, maxima 8.000e+02 min=619.56, at node# 9022501 min=568.094, at node# 9022335 7.900e+02 7.900e+02 max=804.602, at node# 9011326 max=798.693, at node# 9011553 7.800e+02_ 7.800e+02_ 7.7000+02 7.7000+02 7.600e+02 7.600e+02_ 7.500e+02 7.500e+02 7.400e+02_ 7.400e+02 7.300e+02 7.300e+02 7.2000+02 7.2000+02 7.100e+02 7.100e+02 7.000e+02 7.000e+02

Presshardening Cooling Simulations

NA

Presshardening Cooling Simulations

Calculating h_{con}

- application of convection BCs on channel walls is simple and sufficient
- convection coefficient by established analytical solutions for pipe flow

$$h = 0.023 \frac{k}{D} \text{Re}^{0.8} \text{Pr}^{0.3}$$
$$h = 0.023 \frac{k}{D} \text{Re}^{0.8} \text{Pr}^{0.3} \left(\frac{\mu_{bulk}}{\mu_{wall}}\right)^{0.14}$$
$$h = \left(\frac{k}{D}\right) \left[\frac{(f/8)(\text{Re}-1000)\text{Pr}}{1+12.7(f/8)^{1/2}(\text{Pr}^{2/3}-1)}\right]$$

Dittus-Boelter (conservative)

Sieder-Tate (temperature correction)

Gnielinski (wall friction effect)

- average flow velocity is required
 - 1. given mass flow rate per channel
 - 2. calculation with pipe network calculator
 - 3. computed with CFD analysis

Presshardening Cooling Simulations

using an excel sheet to calculate h_{con}(d,v,T)

VNA

Presshardening Cooling Simulations

Cooling Simulation of a B-Pillar

- 3D mesh required for all active tool segments
- mesh contains geometry of cooling channels
- mesh generation in preprocessor is a timeconsuming task
 - \rightarrow 3D mesh generation in CAD System can save a lot of time

Cooling Simulation of a B-Pillar

Cooling Simulation of a B-Pillar

MAT_UHS_STEEL (MAT_244) for advanced simulations

user input:

- alloying elements in mass percent B, C, Co, Mo, Cr, Ni, V, W, Cu, P, Al, As, Ti
- latent heats for phase change reaction
- activation energy for phase transformation
- initial grain size
- yield curves for each phase
- thermal expansion coefficients

TRIA

material output:

- current phase fraction of ferrite, pearlite, bainite and martensite
- computed Vickers hardness
- resulting yield strength
- austenite grain size

Parameter Identification for MAT_UHS_STEEL (MAT_244)

dT/dt	HV ₁₀		
100 K/s	475		
80 K/s	470		
30 K/s	474		
25 K/s	473		
20 K/s	417	\rightarrow	martensite + bainite
10 K/s	247	\rightarrow	no ferrite
8 K/s	232	\rightarrow	small amount of ferrite
3 K/s	182	\rightarrow	small amount of pearlite

YNA

Parameter Identification for MAT_UHS_STEEL (MAT_244)

#	QR2	QR3	QR4	KFER	KPER	ALPHA
А	11600	14900	15400	3.0e+5	4340	0.033
В	11600	14900	15600	3.0e+5	4340	0.033
С	11600	14500	15600	2.0e+5	4340	0.033

Relative error in calculated Vickers hardness

Design a Process to get parts with tailored properties

by courtesy of Daimler AG

Solving the task to get tailored properties

in the furnace by partial heating

Tailored Tempering Process in principle

Microstructure after 14 s closing time (MAT_244)

ANN

Calibration of die heating process

A simple tool setup for simulation calibration

Simulation

Thermografie

testcase every 2nd heater switched off

Calibration of die heating process

Heat supported coldforming of aluminum

The main task

1stage cold forming

Quelle: Prof. Roll Daimler AG, Automotive Grand Challenges 2011

- increased formability due to adapted material properties
- Systematic material calibration for various prestrain and heating temperature
- Integration into an existing materialmodel (MAT_36 MAT_133) possible?

2 stage coldforming with local intermediate heattreatment (IHT)

ZNA

Heat supported coldforming of aluminum

Experimental material characterization

- Reduction of yield stress due to heat treatment
- Higher slope compared to base material \rightarrow higher formability

 \rightarrow hardening curves should be parametrized over prestrain and IHT temperature

The solution in LS-DYNA

 Austenitic stainless steels offer much higher deformability than comparable conventional grades (DP, CP) of same strength

- Excellent formability in drawing and stretch-forming → complex part geometries
- High energy absorption capability \rightarrow crash applications
- Complex hardening behavior
- Accurate forming simulations necessitate consideration of complex hardenig behavior

- Martensite formation causes characteristic hardening behavior
- Martensite formation must be considered in the material model

Hardening Behavior by Hänsel

- martensite formation is temperature dependent
- requires calculation of the actual temperature during forming
- both coupled or adiabatic calculation is possible \rightarrow depends on tool interaction

Simulation of tensile test 1.4301 (AISI304), thickness 0.8 mm in LS-DYNA

/ NI A

- thermal-mechanical coupling, heat loss to ambient
- very accurate prediction of material hardening behavior

- demonstrating the need for a coupled simulation
- standard approach with single input stress-strain curve is insufficient
- only the advanced material model can show differences in results

ZRIA

- validation with kitchen sink tool of TU Graz
- punch cross-section 400 mm x 400 mm
- drawing depth150 mm
- In blank 750 mm x 750 mm, thickness 0.8 mm, 1.4301 (AISI304)

- good agreement of material draw in outline
- accurate prediction of plastic flow behavior of the material model

Ausdünnung in % 2.500e+01 2.300e+01 2.100e+01 1.900e+01 1.700e+01 1.500e+01 1.300e+01 1.100e+01 9.000e+00 7.000e+00 5.000e+00 3.000e+00 1.000e+00 -1.000e+00 -3.000e+00 -5.000e+00 -7.000e+00 -9.000e+00 -1.100e+01 -1.300e+01 -1.500e+01 -1.700e+01 -1.900e+01 -2.100e+01 -2.300e+01 -2.500e+01

NA

Sheet thinning percentage

martensite volume fraction compared with punctual meassures

YNA

