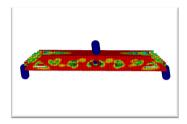
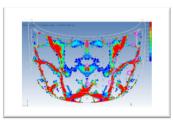
Application of the equivalent static load method for impact problems with GENESIS and LS-DYNA


<u>Heiner Müllerschön</u>, Andrea Erhart, Krassen Anakiev, Peter Schumacher DYNAmore GmbH

Heribert Kassegger MAGNA STEYR Engineering AG & Co KG

Infoveranstaltung "Optimierung und stochastische Analysen" 10th June 2013

Outline



Introduction Equivalent Static Load Method

Case Study 1

Extrusion Profile Optimization, Research Project Crash-Topo

Case Study 2

Optimization of an Engine Hood

Summary

Conclusions, Lessons Learned

Introduction ESL

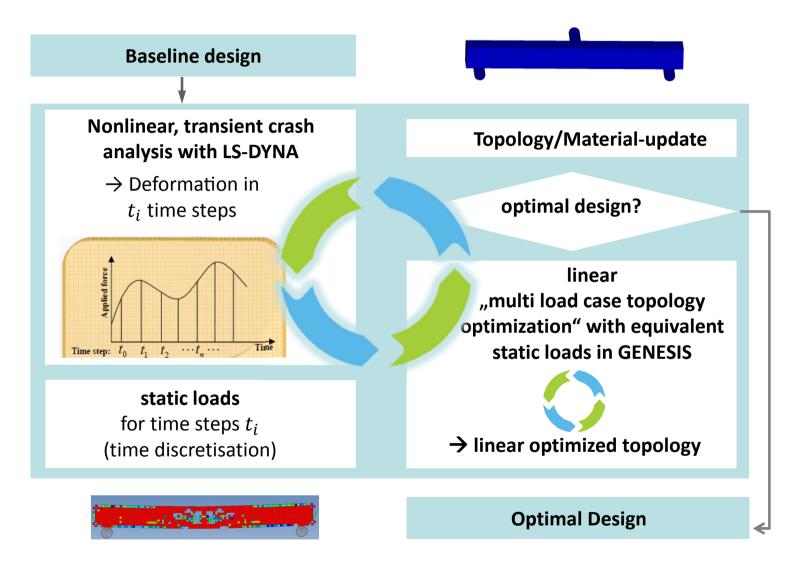
- Idea of the Equivalent Static Load Method
 - Decomposition of the nonlinear, dynamic optimization problem in

Nonlinear dynamic analysis \rightarrow displacement field

Equivalent static loads for single time steps

"multi load case topology optimization" with equival. static loads

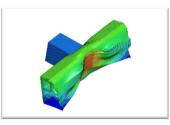
4400000


Weitiin

Displacement field: $u_t(x)$

Equivalent static loads: $F_t(x) = K_{lin}u_t(x)$

Introduction ESL



Agenda

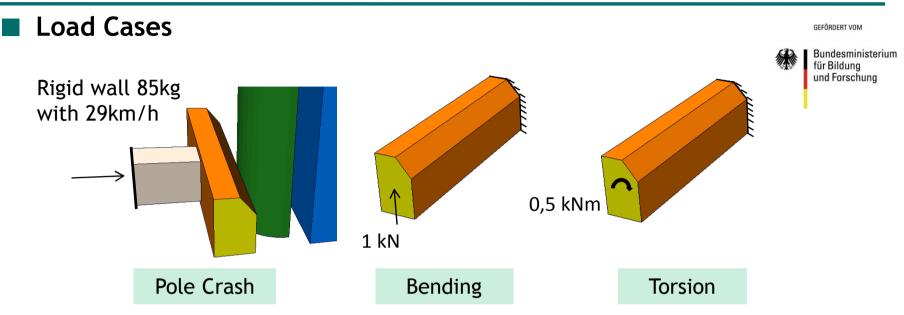
Introduction Equivalent Static Load Method

Case Study 1

Extrusion Profile Optimization, Research Project Crash-Topo

Case Study 2

Optimization of an Engine Hood


the second secon

Summary

Conclusions, lessons learned

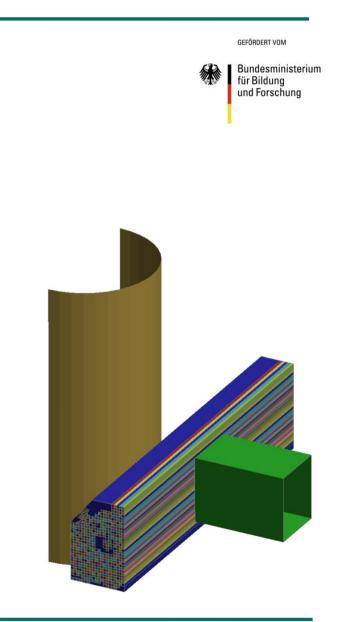
Extrusion Profile Optimization

Targets

- LC Crash: Contact force < 40 kN, time history of contact force as uniform as possible, Intrusion < 70mm</p>
- LC Bending: Displacement < 0.39mm
- LC Torsion: Wrinkling < 3.5*10-3 rad</p>
- Mass < 2.8kg</p>
- 1.6 mm < fillet thickness < 3.5 mm</p>

Extrusion Profile Optimization

Objectives

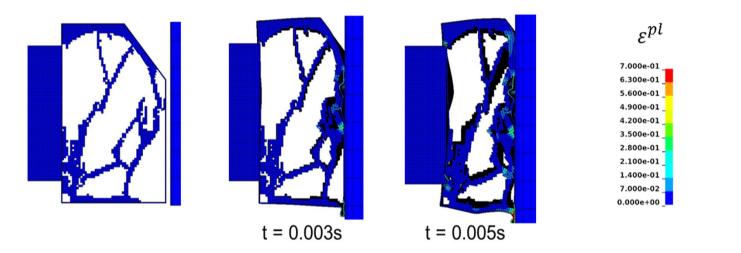

- LC Crash: maximize internal energy
- LC Bending: minimize internal energy
- LC Torsion: minimize internal energy

Constraints

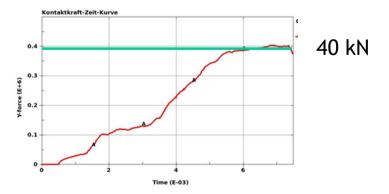
- LC Crash: Intrusion<70mm</p>
- LC Bending: Displacement < 0.3867mm</p>
- LC Torsion: Wrinkling < 3.554*10-3 rad</p>
- Extrusion constraint

Element discretization

- Hexaeder elements with 2mm edge length
- Fully integrated elements



Extrusion Profile Optimization Result example with ESL-Method GEFÖRDERT VOM Bundesministerium für Bildung und Forschung Optimized relative Possible interpretation density distribution ρ_{rel} Results might be transfered to SFE concept for subsequent shape optimization with GHT and LS-OPT - interface has been developed within research project



Extrusion Profile Optimization

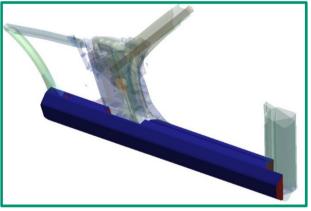
- Result example with ESL-Method
 - Analysis results of optimized topology
 - Maximal Intrusion: 67,1 mm (constraint: d<70mm)</p>

Maximum contact force: 40,4 kN

GEFÖRDERT VOM

für Bildung und Forschung

Bundesministerium


Summary

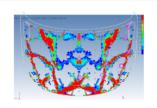
Within the research project "Crash Topo" topology optimization of extrusion profiles, mainly on the example of automotive rocker sills, was examined

GEFÖRDERT VOM

für Bildung und Forschung

- As one new approach for optimization the "Equivalent Static Load Method" was applied
- An automated process with LS-DYNA and Genesis has been setup on an HPC environment
- Geometry of rocker sills can be very complex → no straight forward extrusion profiles
- Fine resolution (small element size) of solid elements within construction space is required, but lead to many elements (ex.: 1mm el.-length → ~10mio elements)

Large buckling of fillets lead to limits of ESL method


Agenda

Introduction Equivalent Static Load Method

Case Study 1 Extrusion Profile Optimization, Research Project Crash-Topo

Case Study 2

Optimization of an Engine Hood

Summary

Conclusions, lessons learned

Project Task

N MAGNA STEYR

Project Information

Joint project between MAGNA STEYR Engineering AG & Co KG and DYNAmore GmbH

Motivation

- Development of a standardized method to design an inner hood panel
- Method should be able to take into account different package and geometry conditions
- Main load cases are head impact (pedestrian safety) and stiffness

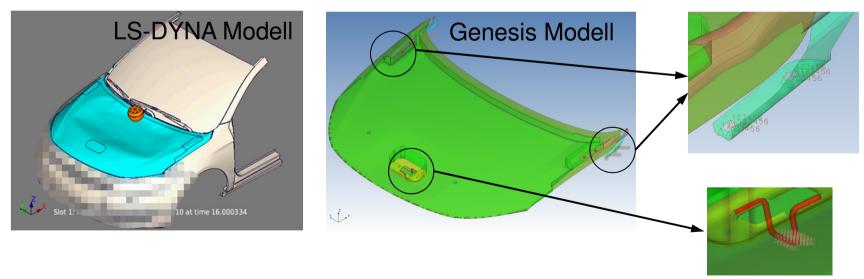
Expected Results

Design of inner hood panel with optimal HIC-value for head impact and stiffness values for static load cases

- Outer hood with constant shell thickness t=0,6mm and material H220
- Inner hood is a duplicate of the outer hood with same nodes and coincident elements but separate property with material DX 56D.

- Design variables for optimization are thicknesses of every single element (Topometry Optimization).
 - Variation of thickness between 0,1mm and 5,0mm.
 - Reduction of number of variables
 - Clustering of elements \rightarrow 4 neighbouring elements have the same thickness during optimization.
 - Symmetry constraint in y-direction

Optimization Model

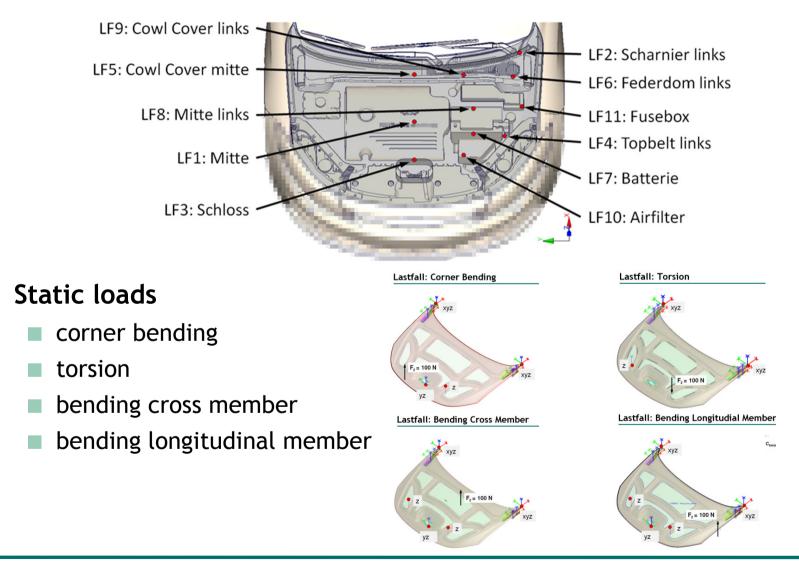


LS-DYNA model for nonlinear impact simulation

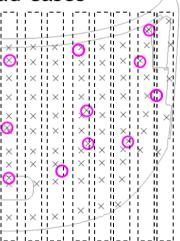
reduced car model with blocking package elements in the engine compartment

Genesis model for optimization with ESL method

- only hood with hinges and lock is considered
- support with SPC's on the hinges and the lock
- the preceding LS-DYNA simulation has been discretized with 9 equivalent static load cases (Δt=2 ms)



Load Cases


Head impact at 11 points

Objectives and Constraints

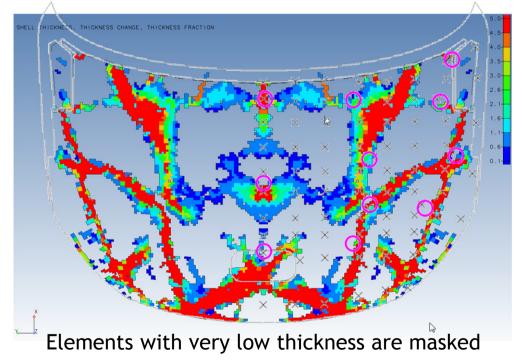
- HIC-Value can not be used as an objective in linear inner topology optimization loop
- Opt. problem formulation for head impact instead
 - Maximize deformation of the hood by avoiding contact with stiff (rigid) underlying structure
- Objective
 - Maximize strain energy for head impact load cases
- **Constraints**
 - Limits for displacement in z-direction for head impact load cases
 - About 80 points with maximum feasible deformation
 - Only for the ESL load cases with large deformation from 6ms on (7 per head impact point)
 - 11 (Head impact point) *7 (ESL) * 80 (Points with displacement limit)
 = 6160 (constraints)
 - Limits for displacement of the static load cases

MAGNA STEY

Results

MAGNA STEYR

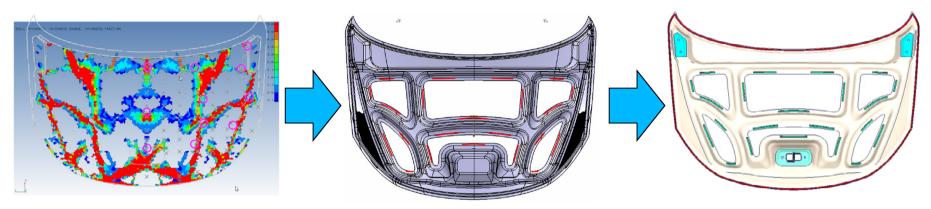
Evaluation of HIC values for each LS-DYNA simulation


Starting design

Optimal design

Dyna-Rechnung	LF1_Mitte	LF2_Scharnier_li	LF3_Schloss	LF4_Topbelt	LF5_Cowl_Cover	LF6_Federdom	LF7_Batterie	LF8_Mitte_li	LF9_Cowl_li	LF10_Airfilter	LF11_Fusebox	unter 900	900-1000	über 1000	Vmin > 0
17	100	1000	2000	110	5.00	100	192	100	100	200	100	8	0	3	0

Element thickness distribution for the optimal solution



Results

Interpretation of CAD-design of the inner hood

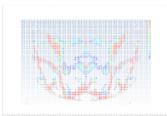
LS-DYNA simulation results of the final design

- Head impact, HIC values
 - On average, results of final CAD-design getting a little worse compared to final topometry optimization results
- Static loadcases
 - torsion
 - corner bending
 - bending cross member
 - bending longitudinal member
- ightarrow threshold value complied
- ightarrow threshold value complied
- \rightarrow threshold value slightly violated
- ightarrow threshold value complied

Summary, Next Steps

MAGNA STEYR

- Topometry optimization with ESL for the design of the supporting structure of an engine hood has been performed
- The result is a preliminary CAD design of the supporting structure
- In a next step nonlinear parameter optimization with LS-OPT will be performed on the basis of the preliminary CAD design to refine functional requirements
- Parameters for the optimization with LS-OPT might be gauge thickness, properties of glue lines, geometric shapes based on morphing, etc.


Agenda

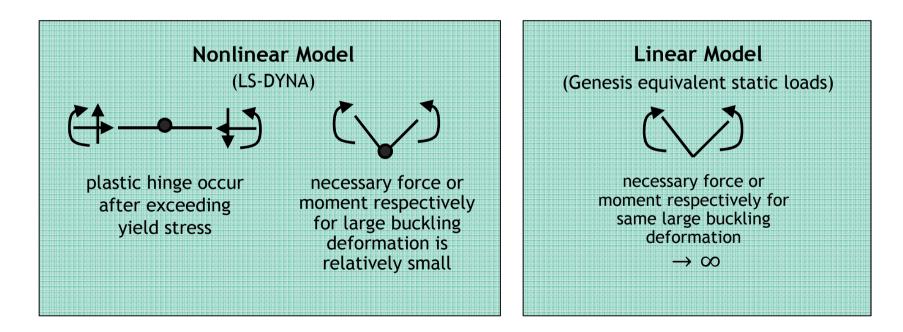
Introduction Equivalent Static Load Method

Case Study 1 Extrusion Profile Optimization, Research Project Crash-Topo

Case Study 2 Optimization of an Engine Hood

Summary

Conclusions, Lessons Learned



Conclusions

Limit of the ESL-Methodologie

Local buckling/folding where plastic hinges occur leads to out of scale equivalent static loads

Conclusions

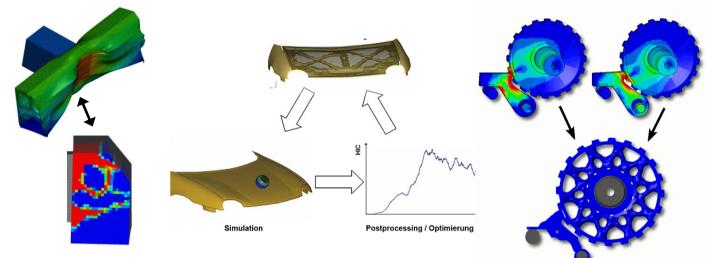
Formulation of Objectives

- Objectives are defined for linear optimization. This means, consideration of nonlinear responses are not directly possible
- Examples: Minimization of HIC value for head impact is not possible as an objective
- Alternative criteria have to be established

Formulation of Constraints

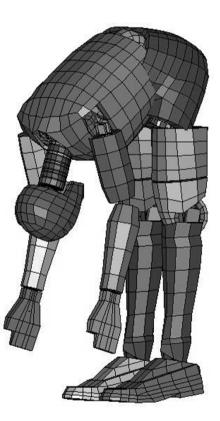
- Constraints are defined for linear optimization as well. Consideration of constraints based on nonlinear responses is not possible
- Constraints are satisfied for the linear replacement problem. They might be violated for the real nonlinear problem

Automated Model Transition


The nonlinear LS-DYNA model has to be translated to a linear Genesis model. Automation of this process is a challenging task. Many Keywords and modelling features of LS-DYNA are supported, but not 100% yet.

Conclusions

ESL-Method is promising


- for nonlinear applications with rather moderate deformations or with more spreaded deformations, for any contact problems, etc.
- Examples: Roof crash test, pedestrian safety load cases, pendulum impact, drop tests, gear wheels ...

- Advantages of ESL-Method
 - Enables Topology/Topometry optimization for nonlinear problems
 - Size/Shape (parametric) optimization with fewer nonlinear solver calls

Thanks for your attention!

