Shape Optimization of a Hood

Yong Ha Han Hyundai Motor Company PLC

> Katharina Witowski Nikolay Lazarov Krassen Anakiev DYNAmore GmbH

> > Stuttgart, February, 29, 2016

Contents

- Motivation and overview
- (Topometry optimization with GENESIS/ESL)
- Shape optimization with LS-OPT and ANSA
 - Setup in ANSA
 - Setup in LS-OPT
 - Results
- Summary

Motivation and overview

- Geometry of the hood panel is significant regarding the pedestrian safety regulations.
- Main load cases are
 - head impact (pedestrian safety),
 - fatigue and
 - stiffness.

Topometry and Shape Optimization

Only Shape Optimization

Topometry and Shape Optimization

Topometry optimization with GENESIS/ESL

Results steel hood

 Shell thickness distribution and following interpretation of CAD-design of the inner hood.

Shape optimization with ANSA and LS-OPT

Problem description

• 18 Load cases:

- 15 Head impact load cases
- Stiffness analysis regarding bending and torsion
- Hood closing analysis
- Objective: Minimize mass.
- Constraints:
 - Head impact load cases (15 points):
 - HIC total score of improved design \geq HIC total score of basic design
 - \rightarrow HIC improved design \leq HIC basic design
 - Displacement of load case bending ≤ C_bending
 - Displacement of load case torsion ≤ C_torsion
 - Hood closing analysis
 - Stress (inner hood/ rail) \leq C_steel

HIC < 650	1.00 point
650 ≤ HIC < 1000	0.75 points
1000 ≤ HIC < 1350	0.50 points
1350 ≤ HIC < 1700	0.25 points
1700 ≤ HIC	0.00 points

Problem description

- 10 Variables:
 - Sheet thickness of inner and outer hood \rightarrow 2 variables
 - Beam depth, width and angle
 - Position of crossing point and angle
 - Rear frame width

Setup in ANSA

Modification of geometry in ANSA using Morph module (steel).

Setup in ANSA

Modification of geometry in ANSA using Morph module (steel)
 selection of geometries.

Setup in LS-OPT

• Interface to ANSA

pt - LS-OPT 5.0	📴 Stage morph 🛛 🕅			
otimization 🏧 🖄 1 🕏	Setup Parameters Histories Respons	es File Operations		
12 vars, 20 d-opt designs	Package Name ANSA			Select ANSA interface
ANSA	Command ansa -Im_retry 60			Command to run ANSA
morph 12 pars	DV File	o morph/it.run/ANSAOpt.	inp	Design Variable file generated by ANSA
a	and substitutes parameters			
	Model Database \${LSPROJHOME}/hood_steel.ansa ANSA database file			ANSA database file
Build Metamodels	Execution			
0 linear surfaces	Resource	Units per job	Global limit	Delete
PROJEKTE/P14 KOSTECH 01/2 DOKUMENT	ANSA Create new resource Use Queuing Use LSTCVM proxy Environment Variables Run Jobs in Directory of Stage	1)[1	×
				<u>o</u> ĸ

Sampling Constraints

Avoid incompatible geometries

→ Define Sampling constraints to get a reasonable design space

Setup in LS-OPT

Setup in LS-OPT

Constraints

• Feasibility of constraints – standard internal formulation in LS-OPT

Constraints

A: Most feasible design if both constraints contain the slack variable, *e*

B: Most feasible design if constraint G is strict, i.e. it contains no slack variable

C: Most feasible design if constraint F is strict, i.e. it contains no slack variable

HIC < 650	1.00 point
650 ≤ HIC < 1000	0.75 points
1000 ≤ HIC < 1350	0.50 points
1350 ≤ HIC < 1700	0.25 points
1700 ≤ HIC	0.00 points
	HIC < 650 650 ≤ HIC < 1000 1000 ≤ HIC < 1350 1350 ≤ HIC < 1700 1700 ≤ HIC

- E.g. G: HIC_1< 650, F: HIC_2< 650
- Possible result if both constraints slack: HIC_1= 705, HIC_2 = 697
- Possible results if F strict: HIC_1 = 753, HIC_2 = 645
 → better for this application!

➔ Define strict constraints for some HIC values that are already close to bound, values for bounds selected depending on initial values.

Setup in LS-OPT

• LS-OPT main GUI window – final setup.

• Optimization History – Objective mass.

Iteration

• Optimization History – Constraints Torsion, Bending, Closing.

HYUNDAI

• Optimization History – Head impact C_1_2, C_1_4, C_3_4, C_7_4.

HYUNDAI

INA

MORE

• Optimization History – Head impact C_0_0, C_2_5, C_4_5, C_5_2, C_6_5.

• Parallel coordinate plot – Head impact C_0_0, C_2_5, C_4_5, C_5_2, C_6_5.

All simulation results:

Some points are even worse, but no better points \rightarrow Probably not possible to improve those values

• Optimization History - Head impact C_0_5, C_2_1, C_3_2, C_5_4, C_6_3.

HYUNDAI

• Optimization History – Head impact C_4_1.

- Final computed optimal value is infeasible (Optimization is performed on the metamodel, accuracy!).
- But optimal value of 5th iteration is feasible.
- Optimum of 5th iteration of C_0_5, C_2_1, C_3_2, C_5_4, C_6_3 was also already improved.

 \rightarrow Optimum of 5th iteration is final optimal solution.

• Optimal Geometry.

Initial geometry

Interpreted topometry optimization result

Optimal geometry

depth	width A	angle A	width B	angle B	crossing point	crossing angle	rear frame width	Outer hood gauge	Inner hood gauge
-0.55	+5.4	34°	+1.60	36°	+20.0	40°	+30	0.6	0.6

Optimal Result.

HIC < 650	1.00 point
650 ≤ HIC < 1000	0.75 points
1000 ≤ HIC < 1350	0.50 points
1350 ≤ HIC < 1700	0.25 points
1700 ≤ HIC	0.00 points

Steel Loadcase HIC basic model HIC improved model HIC improved model after after Genesis optimization LS-Opt optimization (1.1) (6.1) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 4 values 6 values Point 8 improved improved Point 9 Point 10 Point 11 Point 12 Point 13 Point 14 Point 15

Summary

- As a first step topometry optimization with ESL was performed in order to get a rough idea of the shape of an improved inner panel structure.
- The interpretation of the result of the topometry optimization was a design with improved HIC values for four load cases for the steel hood
- In a next step nonlinear parameter optimization with LS-OPT and ANSA was performed on the basis of the preliminary CAD design to refine functional requirements.
- The mass as well as six HIC values could be further improved.
- In total, 10 HIC values could be improved for the steel hood.

Thank you for your attention!

