

Basics of Welding Simulation and Heat Treatment Simulation Applications and Benefits

Infotag Schweißen und Wärmebehandlung 14.04.2016 Zürich

Dr.-Ing. Tobias Loose

Ingenieurbüro Tobias Loose, Herdweg 13, D- 75045 Wössingen loose@tl-ing.de www.tl-ing.eu

Herdweg 13, D-75045 Wössingen Lkr. Karlsruhe E-Post: loose@tl-ing.de Web: www.tl-ing.eu www.loose.at Mobil: +49 (0) 176 6126 8671 Tel: +49 (0) 7203 329 023 Fax: +49 (0) 7203 329 025

Numerical Simulation for Welding and Heat Treatment since 2004

- Consulting
- Training
- Support
- Software Development
- Software Distribution

for **Welding Simulation** and Heat **Treatment Simulation**

www.DynaWeld.eu

Welding and Heat-Treatment with LS-DYNA Distortion – Restidual Stress - Microstructure

Internet:

DEeutsch:www.loose.atENglisch:www.tl-ing.euESpañol:www.loose.es

Welding of a T-Joint

- Double sided T-Joint a = 4 mm
- Plate S355 thickness 8 mm
- 3 Tacks double sided
- Travel speed 80 cm/min
- Current: 390 A
- Voltage: 30 V
- Start Time Tack 1:0 s
- Start Time Tack 2: 20 s
- Start Time Weld 1: 1000 s
- Start Time Weld 2: 1023 s
- Weld 1 and Weld 2 have the same travel direction

Process Simulation with SimWeld

_	_		Torch param	Torch parameters (Ctrl + 3)				
Input	-Paramete	er SimWeld	🗢 Wire	▼ Wire				
_					Diameter	1.6 🗸	[mm]	
					Material	SG-Fe 🗸		
						Wire initial heating		
			SV	(011 D) X	Contact noz. t.	20 🔺 🔺	[*C]	
Geometry	Workpiece parameters (Ctrl + 1) Geometry			s parameters (Ctrl + 2)				
EN ISO EN ISO 9692-1: 2003 (D)			Welding speed	80,00 🚔 🖨 [cm/min]	×	0,00	[mm] *Z	
Joint type	Square edges (3.1.1)	×	Initial temperature	20,00 🗘 🗘 [°C]	Y	0,00	[mm] //X	
width	40,00 🜲 🌲 [mm]	height -1.00 + + [mm]	-Simulation Option	S	L	20,00 🚔 🖨	[mm] Y	
t1	8,00 🚔 🖨 [mm]	t2 8,00 ≑ 🖨 [mm]		Consider gap	R	20,00	[mm]	
ь	0,00 ÷ ÷ [mm]	c -1,00 ÷ ÷ [mm]	Calculation length	User defined V				
radius	-1,00 ‡ ‡ [mm]	e -1.00 + + [mm]		100,00 🜩 [mm]	Along	0 🚔	[*]	
alpha	90,00 🚔 🕻 [*]	beta -1,00 + + [*]	Mesh density	normal (1.0x) 🗸	Across		[*]	
🖌 Left p	✓ Left plate visible			Resources: medium	Equipment			
Material				Accuracy: medium				
<u>Plates</u>	Plates S355							
Position					Select	Lustom	×	
Туре	Custom	~			Process type	Normal	*	
across	across 45,00 • • [*] along 0,00 • • [*]			X Cancel	Wire feed	7,0 🚔 👘 [1	m/min]	
					Voltage	30,0 🚔	[V]	
					Choke	30.0 44	[%]	

SimWeld Results

Temperature

z-Distortion at Evaluation Path

transformed to flat left side

Curved Hollow Section Beam

Curved Hollow Section Beam

Autobody Sheet

Autobody Sheet

KIRLSRUH

Welding z-displacement 5-times scaled

Weld of a Pipe with 40 mm Wall Thickness made of Alloy 625

TRO

Weld of a Pipe with 40 mm Wall Thickness made of Alloy 625 - 60 Layer GMAW

Temperature Field Multilayered Weld 2D Metatransient

Multilayererd Weld T-Joint with large Plate Thickness 2D-Analysis LS-DYNA

2D plain strain Plate: 300 x 80 mm Stiffner: 150 x 24 mm Fillet Weld: a = 13 mm Material: 1.4301

Tack a = 1,4 mm with failiure on strain KFAIL = 0,25 m/m

Initial gap between stiffner and plate: 0,1 mm

Symmetry boundary contitions on left and right side.

T2D

Multilayererd Weld T-Joint with large Plate Thickness 2D-Analysis LS-DYNA – plastic strain

Prediction of Weld Quality

Microstructure and Mechanical Properties

Quenching

Quenching of a Gear made of S355 Temperature Curve

Quenching of a Gear made of S355 Results of Heat Treatment Simulation

Martensit (right) Hardness HV (bottom left) Yield (bottom right)

Validation IIW Round Robin Versuch

Mesuread and calculated results Plate with the dimensions Longitudinal residual stresses 270 x 200 x 30 mm³ with V/U-shaped notch ···· measured stresses at 128 mm 500 distance to the end of the weld Austenitic stainless steel səam • 400 (316LNSPH, Re = 275 MPa)distance to the end of the weld səam residual stresses [MPa] 300 2 Layer welding of the notch with same ---- measured stresses at 106 mm material: 316L distance to the end of the weld 200 səam TIG Welding with with isotropic hardening 100 calculated stresses at 90 mm U = 9 V, I = 155 A, v = 0.67 mm/sdistance to the end of the weld 0 -100 9th International Seminar Numerical Analysis of Weldability -200 Graz - Seggau, Austria -100 -80 -60 -40 -20 0 20 60 80 100 **Kenneth Easterling** distance to weld center [mm] **Best Paper Award** Fig. 9 Measured and calculated longitudinal residual stresses along a line transverse to the weld Given to the pape seam New 3D-calculations of residual stresses consistent with measured results of the IIW round robin programme T. Loose, J. Sakkiettibutra. This paper has been valued by an in made over the three years pr Loose, T.; Sakkiettibutra, J.; Wohlfahrt, H.: New 3D-Calculations of residual stresses consistent with measured results of the orst H. Cerjai IIW Round Robin Programme. In: Cherjak, H. (Ed.); Enzinger, N. (Ed.): Mathematical Modelling of Weld Phenomena Bd. 9, Graz Seggau, September 2009 Verlag der Technischen Universität Graz, 2010

Validation IIW Round Robin Versuch

Validation Nitschke-Pagel Test

Makrosection Temperature: 100 .. 1500 °C

RBURO TO

Result

1,00

0,90

0,80

0,70

0,60

0,50 0,40

0,30

0,20

0,10

0,00 -

-20

-15

-10

-5

0

LS-DYNA Martensit

- Sysweld Martensit

15

Nahtmittenabstand in mm

20

---- LS-DYNA Bainit

- - - - Sysweld Bainit

10

5

Benefits

- Process simulation welding (SimWeld)
 - weld pool formation
 - heat input / heat generation
 - local temperature field, cooling time in the weld and heat affected zone
- Structure simulation welding (DynaWeld)
 - temperature field in the whole assembley during welding, cooling time
 - distortion during welding and cooling
 - clamping forces and bearing reactions
 - plastic strains, strain hardening
 - residual stresses, elastic or plastic reserves
 - microstructure / areas with change of microstructure
- Heat treatment simulation
 - temperature during quenching
 - carburization and depht of arburization for case hardening
 - microstructure and hardness
 - distortion / distortion after hardening

- Adjustment of Process Parameter
- Design of Geometrie
 - optimization of geometry concerning acceptable distortions
 - determination of invers distorted geometry for the design of forming
 - design of gap for laser welding
- Heat Management
 - preheating temperature, intermediate temperature
 - design of desired microstructure
- Design of Clamps
 - predeformation
 - clamp forces
- Design of the Order of the Welds
- Observation of the State of Stresses
 - prestressed zones / tension zones
 - delimitation of plastic strain
- Special Tasks ...

- Simulation is available in early stage of design.
- Simulation is available without any fabrication place.
- Simulation is helpful for the analysis of damages.
- Simulation helps to understand the process and its events.
- Simulation is helpful for education and training
- Welding and heat treatment simulation provides the state of the assembly for further simulation analyses.

Material

Sources of Material Data for Welding and Heat Treatment

- Experiment
 - Execution of tests
- References
 - Papers with test results for material data
 - Material data sheet
- Software / Material Simulation
 - WeldWare[®]
 - JMatPro
 - MatCalc

Depending on Temperature

Depending on Microstructure

Description of phase transformation (ZTU, ZTA)

Thermal strain

Transformation effects

Simplified Approach

Deactivation of not yet deposited material

DynaWeld Time = 14.369 Contours of History Variable#10 min=0, at elem# 6241

Reset of plastic strain

Heat Input

Simulation with SimWeld Process Simulation GMAW Numerical Prediction of Equivalent Heat Source

SimWeld Preprocessing

- Definition of:
 - weld preparation
 - geometry and geometric parameter
 - work position
 - material

SimWeld Preprocessing

- Definition of:
 - wire: feed, diameter, material,
 - stick out
 - travel speed
 - angle of torch, stabbing, slabbing, skew
 - shielding gas
 - machine settings U, I
 - process type normal, pulsed U/I, pulsed I/I
 - pulse parameter

▼ Wire			▼ Equipment				
Diameter	1.0 👻	[mm]	Shielding gas 82% Ar 18% CO2 V	Select	Custom	~	
Material	SG-Fe 🗸 🗸		Welding cable	Process type	Pulsed I/I	~	350
Contact noz. t.	Wire initial heating	[°C]	Consider welding cables Hose assembly	Wire feed	4,6 🔹 🖨 [m/	/min]	300
Position			Length 3,5 C [m]	Pulse Shape	Steep	¥	₹ 200
×	0,00	[mm] \A Z	Cross section 33 (mm²)	Frequency	82	[Hz]	150
Y	0,00 💠 🗘	[mm] //X	Length 10,5 🗣 [m]	Pulse time	2,4	[ms]	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L	20,00 🜲 🖨	[mm] Y>	Cross section 95 💭 [mm²]	Base current	40,0	[A]	0 1 2 3 4 5 6 7 8 9 10 11 12
R	20,00	[mm]	Cable to workpiece	Pulse current	400,0	[A]	Are simulation
🔻 Angle			Cross section 95 1 [mg ²]	Arc length	22,0	[%]	SIMULATION 3.1
Along	0 💠 🖨	[*]	Voltage metering				SimoLATION 3.1
Across		[*]	Execute voltage metering				Pause Stop

٠

•

٠

•

٠

SimWeld Results

Estimation of Heat Source Parameter from

Welding Procedure Specification (WPS) for Arc Weld, TIG, GMAW, SAW

- Velocity
- Estimation of weld pool geometry
 - length = length of heat source
 - depth = depth of heat source
 - width = withd of heat source
- Energy input per time
 - Voltage
 - Currency
 - Energy per unit length
- Estimation of efficiency
 - TIG: 0,75
 - GMAW: 0,8
 - SAW: 1,0

Doppelt-Elipsoide Heat Source (Loose) with constant heat source density

u

qf, qr: Wärmequelldichte konstant:

- Wärmeeintrag qf für $(u/af)^2 + (v/c)^2 + (w/b)^2 \le 1$
- Wärmeeintrag qr für $(u/ar)^2 + (v/c)^2 + (w/b)^2 \le 1$

$$qf = 1,5 * Q * ff / (af^2 * b^2 * c^2)$$

$$qr = 1,5 * Q * fr /(ar^2 * b^2 * c^2)$$

ff + fr := 2

Geometry function (double-elipsoid)

Parameter: Q: total energy per unit time qf: source density front qr: source denstiy rear ff: ratio front fr: ratio rear af: radius front ar: radius rear b: radius width c: radius depth

Laser, Electron Beam, Laser-Hybrid Adjustment due to Microsection

- Velocity
- Estimation of the geometry of weld pool from microsection
- Geometry of weld pool = geometry of equivalent heat source
- Adjustment of heat input until calculated liquidus line fits liquidus line of microsection

Double Conical Heat Source (Loose) with constant heat source density

Local Coordinate System Heat Source Moving along Trajectory

ay:

Rotation of the reference around the trajectory. The reference needs to be adjusted in torch or beam direction.

For the Heat Sources with the DynaWeld Code TSxx only a a trajectory needs to be defined. NodeSet 7mm The Reference is automatically set normal to the surface. Reference

Global **Coordinate System**

X

v-offset:

Trajektory 4mm NodeSet 4mm

movement of heat source in direction of torch

> Local Coordinate System Heat Source

w-offset:

movement lateral to the direction of torch and lateral to the direction of travel

u: Trajektory direction

- v: Torch direction
- w: Lateral direction

Final Adjustment of Heat Input

Determination of calibration factor kf to achieve the target heat input

Metatransient Heat Source

with constant heat source densiy in the whole part

Metatransient Method with Engergy calibration

Metatransient Method with Engergy calibration

Process

Welding

Heating

Cooling

Reheating Tempering Effects

Grinding and Rewelding

Heat Treatment

Heating

Thermal Heating Inductive Heating

Carburisation

Quenching

Tempering

Process Chain

Manufacturing of a Box Task and Model

Forming:

- The roof geometry is made by forming a 3 mm thick sheet (1.4301) Assembly:
- Add the sidewall
- Welding:
- Weld the sidewall to the roof **Clamp and predeformation:**
- press the sidewall on measure **Assembly:**
- Add the bottom plate
- Welding:
- Weld the bottom plate to the sidewall **Unclamping**

Model:

- Solid-element model
- Material model (*MAT_270) is used in all steps
- History variables and deformations are kept from one step to an other
- Implicit analysis in all steps

Deep-Drawing of a Cup from a Laser Welded Sheet Task and Model

Welding:

• Two sheets (S355) with 1 mm wall thickness are laser welded

Forming:

- The welded and distorted sheet is clamped
- a globular die is pressed slow in the sheet.

Model:

- Shell-elements are used for the sheet, solid elements are used for the clamps and the die
- Same material model (*MAT_244) is used in all steps
- History variables, phase proportions and deformations are kept from one step to an other
- Welding: implicit analysis, Forming: explicit analysis

Stresses and Strains in Midsurface of Shell after welding and deep drawing

top left:

effectiv stress bevor unclamping 200 .. 1100 N/mm² bottom left: effectiv stess after unclamping 0 .. 200 N/mm² bottom right: plastic strain after unclamping 0 .. 0.65 m/m

Microstructure during Deep-Drawing

top left: Ferrit proportion top right: Bainit proportion bottom right: Martensit proportion

Effective Stress during Forming Influence of Material Property Change from Welding

Thinning of the Sheet Influence of Material Property Change from Welding

Process chain Heat Treatment - Welding

Welding after Heat Treatment

Results of Process Chain Simulation Heat Treatment - Welding

Thanks for your Attention!

