Batteries crash simulation with LS-DYNA

In collaboration with J. Marcicki et al, Ford Research and Innovation Center, Dearborn, MI

Distributed Equivalent Circuit (1st Order Randle)

x (into page)

 Jelly roll (anode – separator – cathode) transports Li+ ions; modeled with Randle circuit

Page 3

r₀: Ohmic & kinetic

u: Equilibrium voltage (OCV)

 r_m : Current collectors

Standard EM resistive solver

- **\$ continue** of the other ot
- $E = \operatorname{grad}(\phi)$: electric field
- $V = \phi_2 \phi_1$: voltage
- $J = \sigma E$: current density (σ = electric conductivity)
- div (J) = 0 => $\Delta \phi$ = 0 + boundary conditions

Introduction of randle circuits in resistive solver

 $\begin{array}{l} \varphi_2 - \varphi_1 = u - r_0^* I - V_c \\ r_0^* i + \varphi_2 - \varphi_1 = u - V_c \\ i + (\varphi_2 - \varphi_1) \ / \ r_0 = \ (u - V_c) \ / \ r_0 \end{array}$

FEM solve:

$$(S_0 + D) * \phi = b$$

Where

- S₀ is the Laplacian operator (nds x nds)
- D has
 - $1/r_0$ at (N_1, N_1) and (N_2, N_2)
 - $-1/r_0$ at (N_1, N_2) and (N_2, N_1)
 - 0 elsewhere
- b has

Page 5

- 1/r₀(u-v_c) at N₁
- $-1/r_0(u-v_c)$ at N₂
- 0 elsewhere

Actualization of randle circuits: i= $(S_0 * \phi)(N_1)$ $V_c(t+dt)=V_c(t)+dt^*(i/c_0-V_c(t)/r_{10}/c_{10})$ soc(t+dt)=soc(t)-dt*i*c_Q/Q u=u(soc)

Isopotentials

Isopotentials can be defined and connected:

- The connectors do not need to be meshed.
- Enables alignment of cell simulations with experimental conditions (low rate cycling, HPPC, continuous discharge, ...).

Randle circuits energy balance

The different parts of the energy are tracked down

Typical discharge of unit cell in a resistance

EM/thermal connection

Page 8

Contact for Internal Short Models

Replace randle circuit by resistance $r_s R_s * i^2$ added to thermal

Experiment + simulation (voltage, current, temperature) should give good models

Randle circuits in LS-PREPOST

Current density

Contact illustration (1)

- Mechanical models for cells with very thin layers of materials of very different stiffnesses are still under investigation.
- In the meanwhile, in order to avoid the dificulties of the small thicknesses, model where the thickness was * 100, as proof of principle
- Rod crushes cell with 22 unit cells

Voltage vs time

Contact illustration (2)

Contact illustration (3)

Current density

Temperature

More at the 14th International LS-DYNA User's Conference Dearborn, MI, June 12-14, 2016

A Distributed Randle Circuit Model for Battery Abuse Simulations Using LS-DYNA®

Pierre L'Eplattenier¹, Iñaki Çaldichoury¹ James Marcicki², Alexander Bartlett², Xiao Guang Yang², Valentina Mejia², Min Zhu², Yijung Chen² ¹LSTC, Livermore, CA, USA ²Ford Research and Innovation Center, Dearborn, MI, USA

Battery Abuse Case Study Analysis Using LS-DYNA

James Marcicki¹, Alexander Bartlett¹, Xiao Guang Yang¹, Valentina Mejia¹, Min Zhu¹, Yijung Chen¹, Pierre L'Eplattenier², Iñaki Çaldichoury² ¹Ford Research and Innovation Center, Dearborn, MI, USA ²LSTC, Livermore, CA, USA