

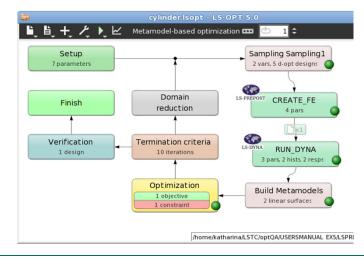
### **New Features in LS-OPT® 7.0**

Katharina Liebold, DYNAmore GmbH Nielen Stander, Anirban Basudhar – Ansys/LST, LLC

30.4.2021



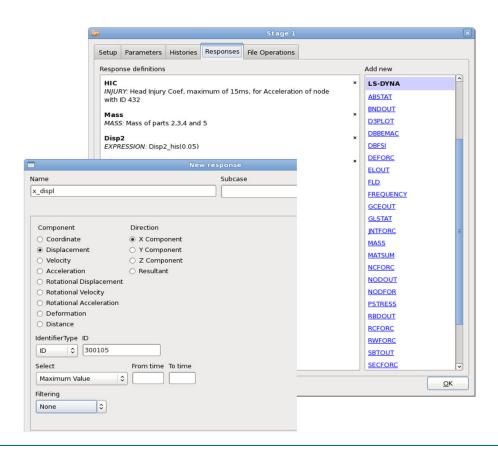
### **Outline**


- Overview on LS-OPT
- New Features in LS-OPT 7.0



#### **About LS-OPT**

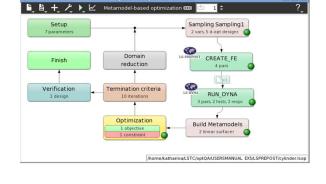
- LS-OPT is a stand alone optimization software
  - → can be linked to any (simulation) code –
  - Interface to LS-DYNA, Excel, Matlab
  - Interface to LS-PrePost, PRIMER, ANSA, Hypermorph, ...
    - → shape optimization
  - Interface to META Post
    - → result extraction
  - Interface to LS-OPT, LS-TaSC
    - → nested optimization
  - User-defined interface
  - Interface to Queuing Systems
    - PBS, LSF, SLURM, AQS, User-defined, ...
    - → LS-OPT as process manager

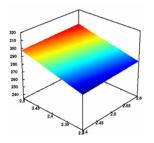


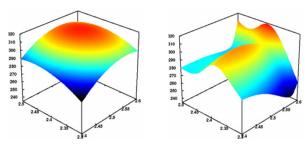





#### **About LS-OPT**


- LS-DYNA integration
  - Importation of design parameters from LS-DYNA keyword files (\*PARAMETER)
  - Support of include files (\*INCLUDE)
  - Result extraction of most LS-DYNA response types
  - Checking of LS-DYNA keyword files (\*DATABASE\_)
  - Monitoring of LS-DYNA progress

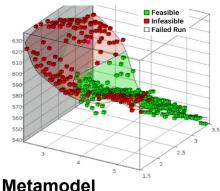



## Methodologies

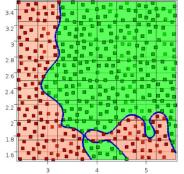
- (Sequential) Response Surface Method ((S)RSM)
  - → Metamodels
  - Polynomials
  - Radial Basis Functions (RBF)
  - Feedforward Neural Networks (FFNN)
- Genetic Algorithm (MOGA->NSGA-II)
  - → Multi-objective Optimization
  - Direct and metamodel-based
- Monte Carlo Analysis
  - → Robustness Analysis
  - Direct and metamodel-based







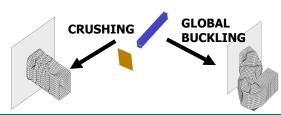




### Methodologies

Classifiers (Support Vector Classification)

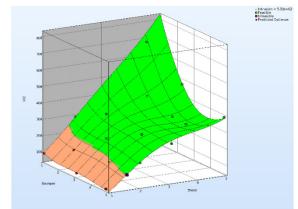


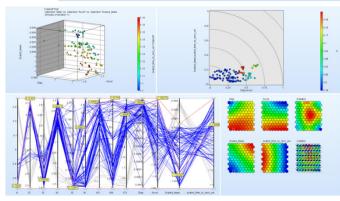
Approximation of response


- Discontinuous responses
- Binary responses
- → Constraints for optimization or reliability analysis



#### Classifier


Approximation of constraint boundary


- Design point (variable values)
- Feasibility of each design





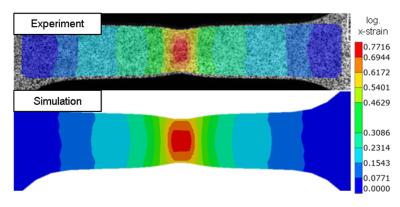
- Optimization
  - Size-/Shape optimization
  - Mixed continuous/discrete variables
    - Specify sets of discrete variables (e.g. sheet thicknesses)
  - Parameter/System Identification
  - Multiple load cases
    - Multi-disciplinary Optimization (MDO)
  - Multi-objective optimization (Pareto Frontier)
  - Multi-level optimization
  - Reliability based design optimization
  - Robust parameter design



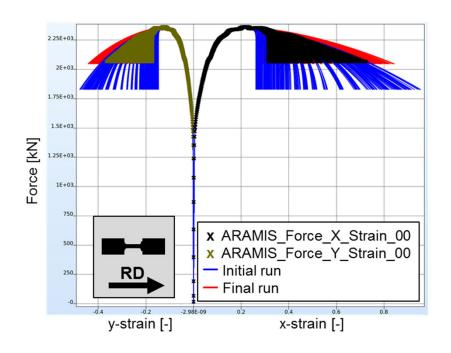




### Optimization

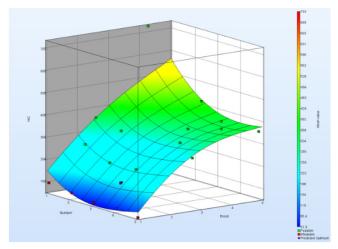

 Parameter/System Identification Module:
 Calibration of test and simulation curves or scalar values



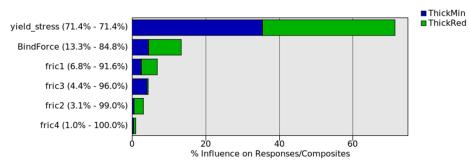





- Optimization
  - Full-field calibration
    - parameter identification using DIC data
    - Matching in time and space

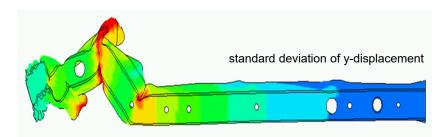


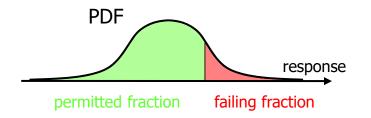

Deformation field of tensile test

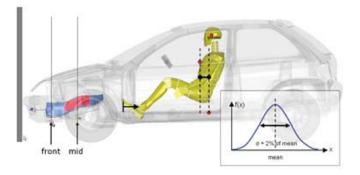





- Sensitivity Analysis
  - Design Exploration
  - DOE Studies for Variable Screening (ANOVA, Sobol)
    - Contribution of variables to system performance
    - Identification of significant and insignificant variables
    - Ranking of importance
  - Principal Component Analysis (PCA)



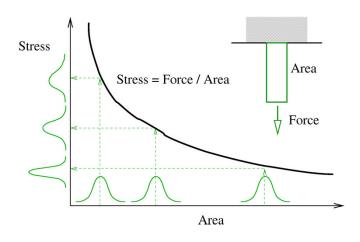



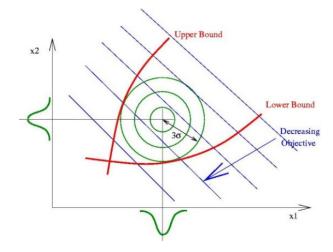



- Stochastic/Probabilistic Analysis: Consideration of uncertainties
  - Test of Model Robustness
    - Statistics (mean, standard deviation)
    - Correlation Analysis
  - Reliability (Probability of Failure)
  - Outlier Detection
  - Fringe statistical results on FE model





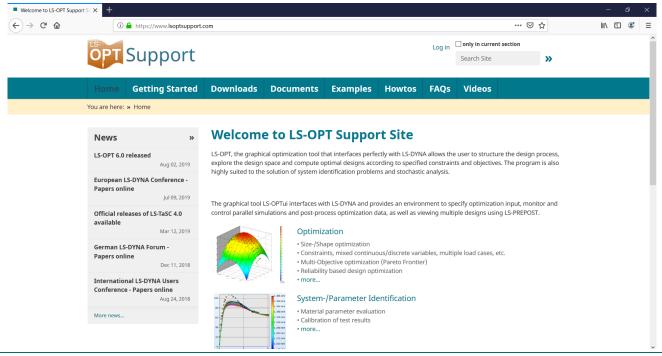



### Optimization incorporating uncertainties

- Robust Parameter Design (RDO)
  - Improve/Maximize the robustness of the optimum




- Reliability Based Design Optimization (RBDO)
  - Improve failure probability of optimum

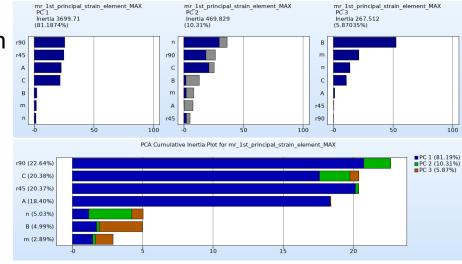




#### **LS-OPT Support webpage**

- www.lsoptsupport.com
  - Many examples, tutorials, FAQs, HowTos...

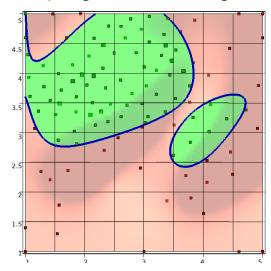





# New Features in LS-OPT 7.0

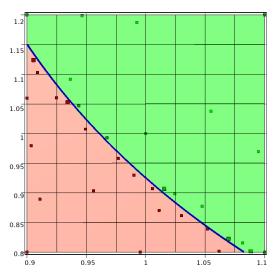


## **Principal Component Analysis (PCA)**


- → Influence of variables on histories or multipoint responses
- Multivariate statistical technique
  - Reduction of correlated observations (time values/spatial points) without loosing information
  - → Principal components
- Uses Proper Orthogonal Decomposition (POD) of correlation matrix
- Sensitivities: Contribution of each principal component and cumulative history/multiresponse sensitivity measure






### **Adaptive Sampling**

- EDSD Sampling Constraints (<u>Explicit Design Space Decomposition</u>)
  → sampling based on classifier predictions
- Optimization
  - Sampling in feasible region



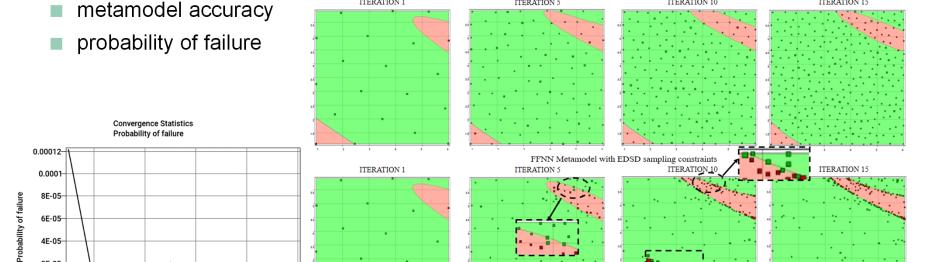
### Reliability

Sampling near the boundary





## **Sequential Monte Carlo Analysis**


Number of Iterations

Iteratively add space-filling or adaptively selected samples

ITERATION 1

Convergence

4E-05-2E-05-



FFNN Metamodel with Space-filling Sampling



#### Job scheduler

- SSH Support
  - SSH is the default access into UNIX systems
  - Well understood by IT staff
    Maintained and secure
    - Run job directly on remote machine
    - Submit job to cluster via proxy machine
    - Supports OpenSSH or PuTTY binaries (common)
  - SSH host configuration saved in user settings as opposed to project file
  - GUI settings in lieu of environment variables

- Simplified BLACKBOX queuing system
  - No need to implement LsoptJobCheck script
  - User-defined termination criteria from GUI
    - Job executable return code
    - Line in stdout (e.g. N o r m a l)
    - File existence
    - Line in file
- User-defined port range for runqueuer
- Parallel limit
  - Increase number of simultaneous runs -300 parallel limit no longer valid



## **Process Management: Case and Stage (de)activation**

Deactivate selected MDO samplings or stages

Automatic (de)activation of dependent

composite expressions, classifiers, objectives, constraints, ...

Case deactivation Sampling CRASH Setup Sampling NVH 6 parameter 4 vars. 8 d-opt designs 4 vars. 8 d-opt designs Domain reduction 4 Finish CRASH NVH (SRSM) 6 pars, 5 resps 5 pars, 3 resps Verification Termination criteria Optimization **Build Metamodels Build Metamodels** Composites 1 definition 5 linear surfaces Crash-Modal MDO problem (small car), Iterative solution /home/nielen/QA/optQA/CLASS\_EXAMPLES/DESIGN\_OPTIMIZATION/MDO/ITERATE/mdo.iterate.correct.isop/

Sampling sampling\_MA 5 yars, 10 sp filling designs FE\_Morpher\_Stress FE\_Morpher\_Modal Molding\_Morpher FF Morpher Domain reduction Molding\_Analysis Cooling\_Analysis Warping\_Analysis Verification Termination criteria 100 design Map\_fiber\_to\_mesh Map\_fiber\_to\_mesh\_S Map\_fiber\_to\_mesh\_m Stress\_Analysis LS-DYNA Crash\_Analysis Modal\_Analysis METAPost\_DYNA METAPost\_NASTRAN\_ METAPost\_DYNA\_Stre

**Build Metamodels** 



Integrative optimization of injection-molded plastic parts

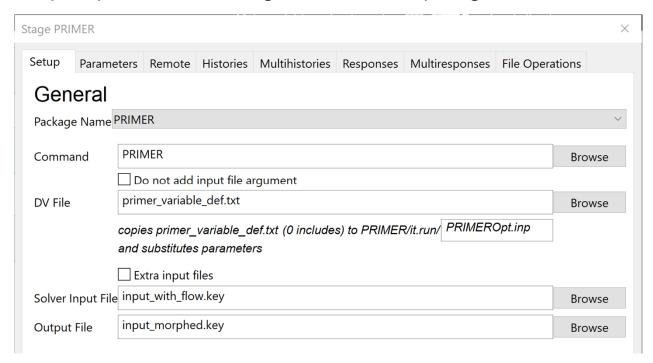
/home/nielen/QA/optQA/PROCESS\_SIMULATION/BASF/DEMO/3/basf3.isoi

Stage deactivation

Global Sensitivities

Composites

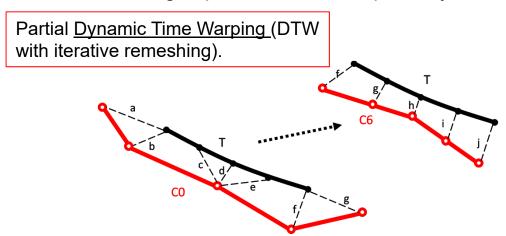
2 definitions


## **Command line options**

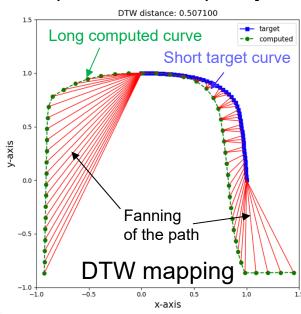
- Run LS-OPT in batch mode with command line options
- LS-OPT command line options
  - Archiving
  - Repair
  - Baseline Run
  - Clean



# **Interface to Oasys PRIMER**


Shape optimization using PRIMER morphing tool






## **Material Calibration Using Partial Curves**

- Modified Dynamic Time Warping
  - Partial curves confound the error source (shape vs length mismatch)
  - Trimming improves curve compatibility and can reduce optimization complexity



- Suitable for noisy curves
- Suitable for partial mapping





# **Comparison of Curve Distance Measures**

| Distance Metric                          | Principle                                                                                                                                                           |   | Advantage                                                    |   | Disadvantage                                                          |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|---|-----------------------------------------------------------------------|
| Euclidean Distance (MSE)                 | <b>Mean Squared Error</b> of the difference in curve ordinates                                                                                                      | • | noise<br>partial curves                                      | • | hysteresis: the curves must be functions                              |
| Partial Curve Mapping (PCM)              | <b>Area between curves.</b> Preserves the arc length.                                                                                                               | • | curves of unequal<br>geometric length<br>hysteresis          | • | noise<br>(due to arc length<br>preservation)                          |
| Discrete Fréchet (DF)                    | Minimum of the maximum of all possible edge lengths along a path which connects all given data points, taking into account the location and ordering of the points. | • | noise<br>hysteresis                                          | • | curves of unequal<br>geometric length                                 |
| Dynamic Time Warping<br>(DTW)            | Minimizes the sum of path connectors between the curves in a <b>one-to-many mapping</b> end to end.                                                                 | • | noise<br>hysteresis                                          | • | curves of unequal<br>geometric length<br>more expensive to<br>compute |
| Modified Dynamic Time<br>Warping (DTW-p) | Recursively <b>trims coincident end connectors</b> of DTW. Simple extension of DTW.                                                                                 | • | noise<br>hysteresis<br>curves of unequal<br>geometric length | • | more expensive to compute                                             |

**DYNA** 

## More Information on the Ansys/LST Product Suite

- Ansys/Livermore Software Technology (Ansys/LST) www.lstc.com
- LS-DYNA
  - Support / Tutorials / Examples / FAQ www.dynasupport.com
  - More Examples www.dynaexamples.com
  - Conference Papers www.dynalook.com
  - European Master Distributor www.dynamore.de
- LS-PrePost
  - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT/LS-TaSC
  - Support / Tutorials / Examples www.lsoptsupport.com



[THUMS® www.dynamore.de]

