Dynamore Express

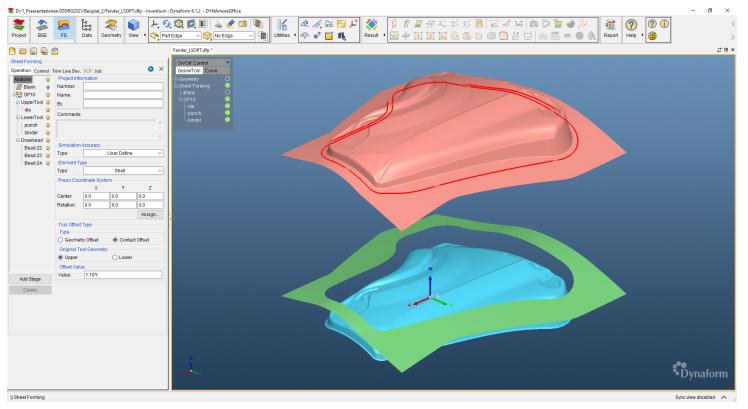
Robustness in (Sheet) Metal Forming with LS-OPT

Mathias Merten, Katharina Liebold

DYNAmore GmbH

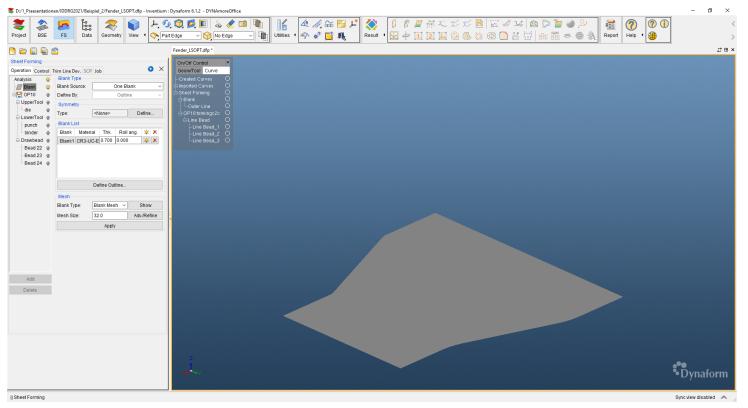
July 17th, 2021, Berlin/Stuttgart

Copyright 2021, DYNAmore GmbH.



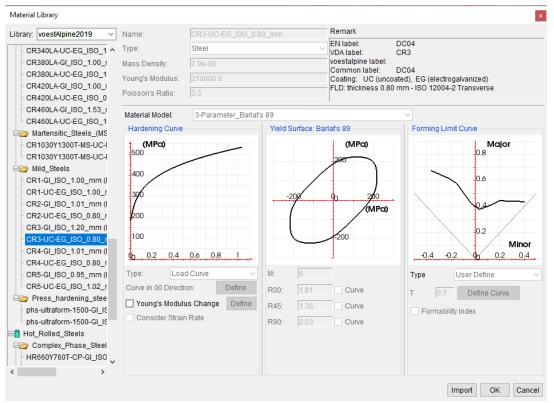
Outline

- 1. Motivational Introduction Example
- 2. Metamodels and Classifier
- 3. Results and Visualization
- 4. Summary and Outlook



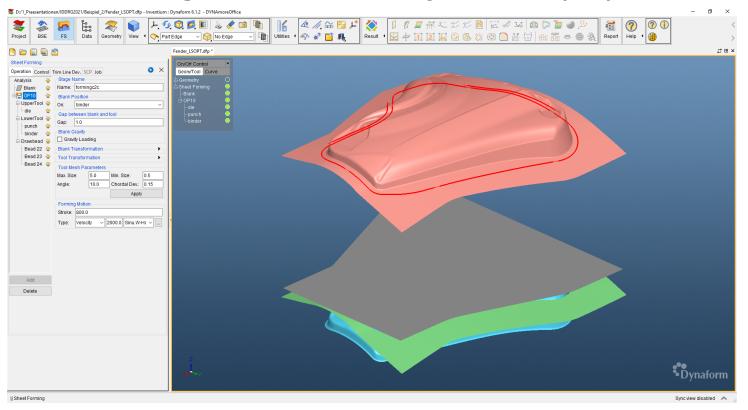
Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.


Slide 3 of 38

Copyright 2021, DYNAmore GmbH.

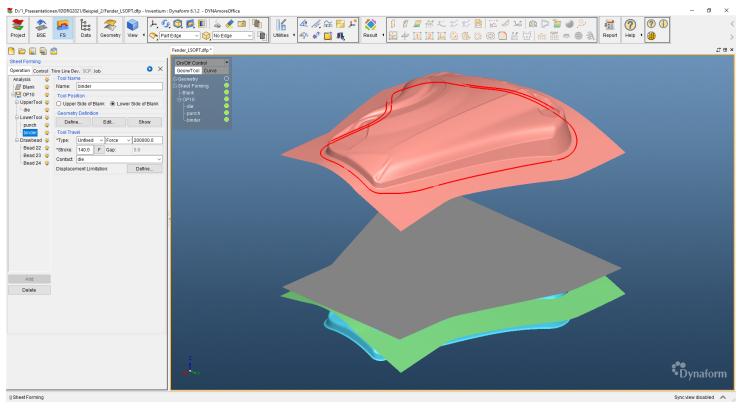
Copyright 2021, DYNAmore GmbH.



Material Database available via DYNAmore sales team

 A https://www.dynamore.de				2 Q. Search					o 🖂	
			Ē≮	Downloads 🕹	Search Site	Training	Deutsch	English		,
LS-DYNA Models Pre- and Postprocessing Optimization Process Chain Simulation Data Management										
You are here: Home / Products / Material Cards Material Cards In cooperation with the Austrian steel producer voestalpine, DYNAmore has created a material database for over 60 different steel types for metal forming simulations. Kathleen Friz: * Contact: * Contact:										
DYNAmore has converted the dat		etal forming simulations. These ma	er 60 different steel types. The data is based on tes erial cards are also available as material libraries fi				Kathrin Faas Ձ Kathrin Faas +49 711 459600274 +49 711 45960029	L		
Products LS-DYNA Models Pre- and Postprocessing Optimization	Services Engineering Development Research Material Competence Center	Training Seminars Conferences DYNA-Examples	Company Profile Contact Locations Iobs	News Press Releases DYNAmore Newslett FEA Newsletter Meet Dynamore	er	Downloads Manuals Papers Presentatio Flyers				

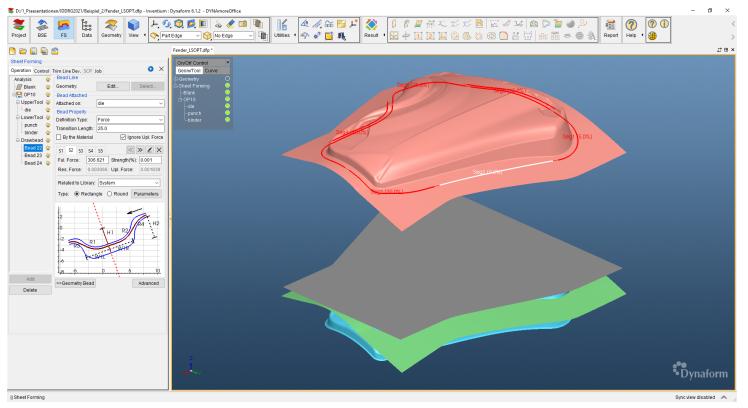
Copyright 2021, DYNAmore GmbH.



Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 7 of 38



Copyright 2021, DYNAmore GmbH.

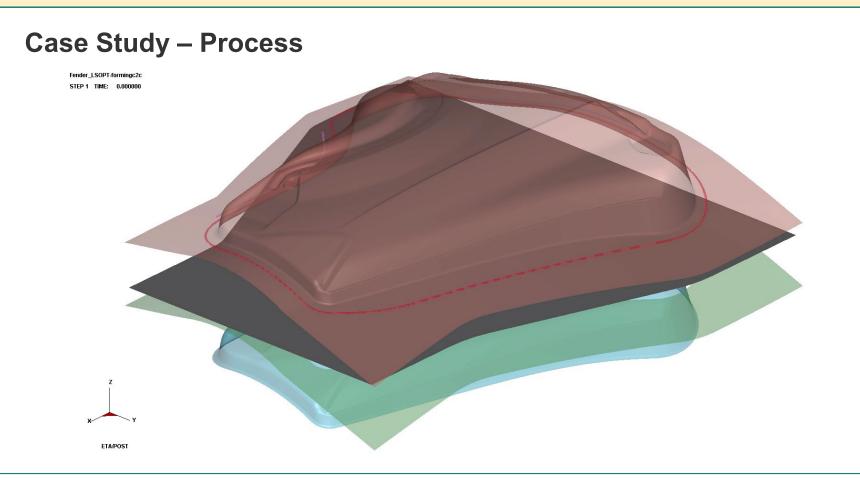
No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 8 of 38

Copyright 2021, DYNAmore GmbH.

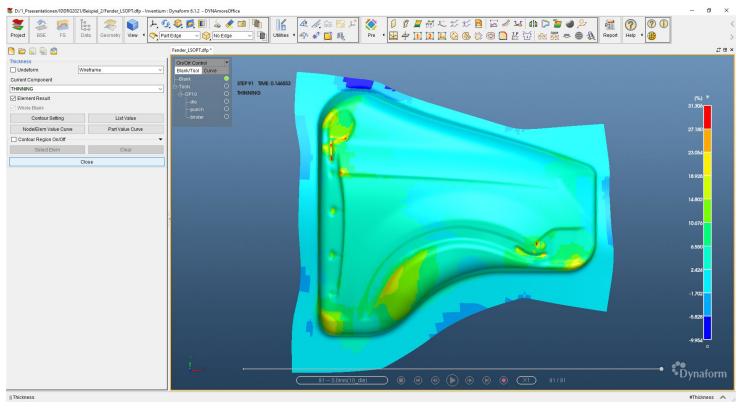
No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 9 of 38



Copyright 2021, DYNAmore GmbH. No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

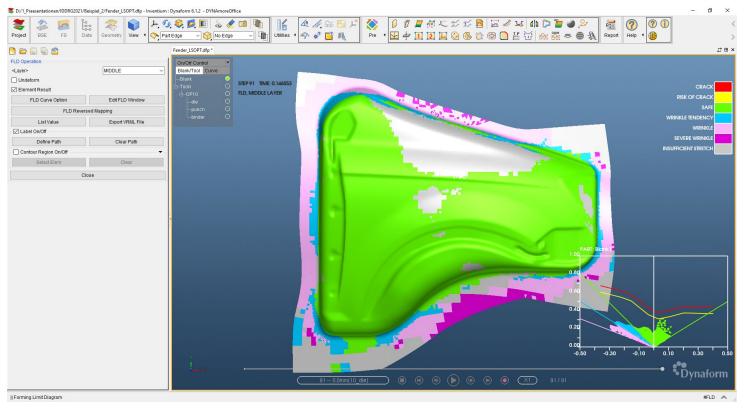
Slide 10 of 38



Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 11 of 38



Copyright 2021, DYNAmore GmbH.

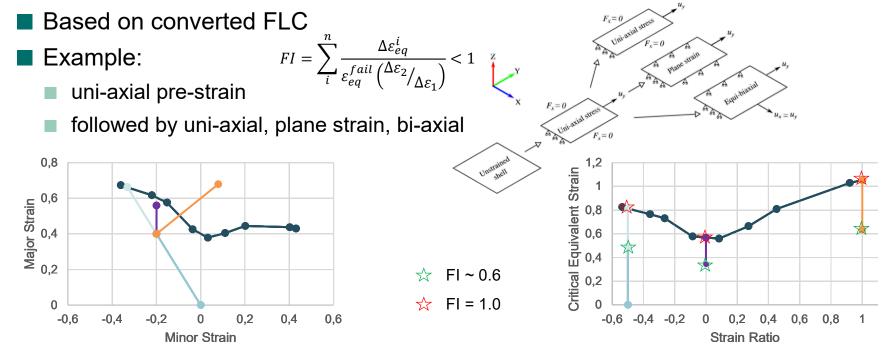
Copyright 2021, DYNAmore GmbH.

Sheet Metal Forming Simulation with Dynaform® (eta) *MAT_3-PARAMETER_BARLAT_{OPTION}

This is Material Type 36. This model was developed by Barlat and Lian [1989] for modeling sheets with anisotropic materials under plane stress conditions. Lankford parameters may be used to define the anisotropy. This particular development is due to Barlat and Lian [1989]. *MAT_FLD_3-PARAMETER_BARLAT is a version of this material model that includes a flow limit diagram failure option.

Available options include:

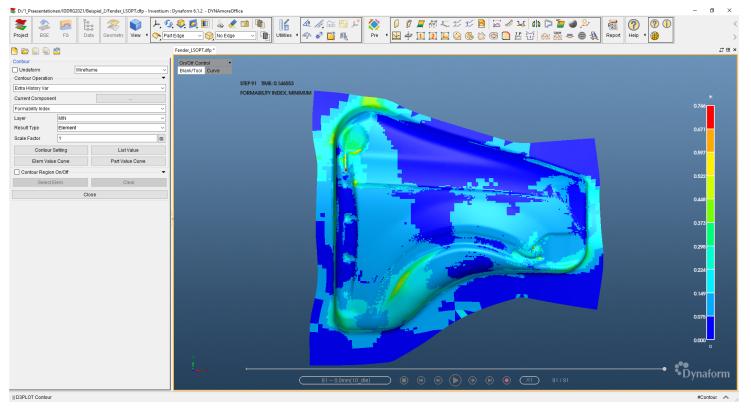
BLANK>


NLP

The NLP option estimates failure using the Formability Index (F.I.), which accounts for the non-linear strain paths seen in metal forming applications (see the Remarks). The NLP field in Card 4b *must* be defined when using this option. The NLP option is also available for *MAT_037, *MAT_125, and *MAT_226.

Copyright 2021, DYNAmore GmbH.

Scalar measurement for formability in case of nonlinear strain paths



Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 15 of 38

Copyright 2021, DYNAmore GmbH.

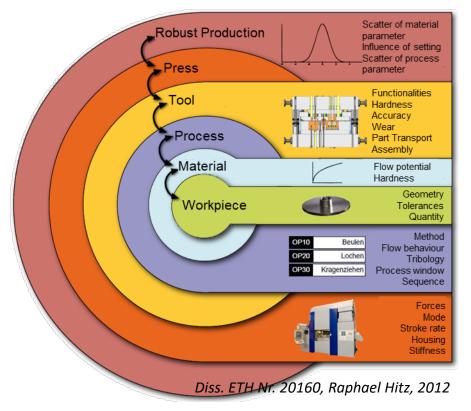
No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 16 of 38

Everything within specifications

■ (Of course: Depends on the specification in the showcase)

Let's start production!


What could go wrong?

Copyright 2021, DYNAmore GmbH. No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 17 of 38

Robustness and Numerical Process Simulation

Workpiece

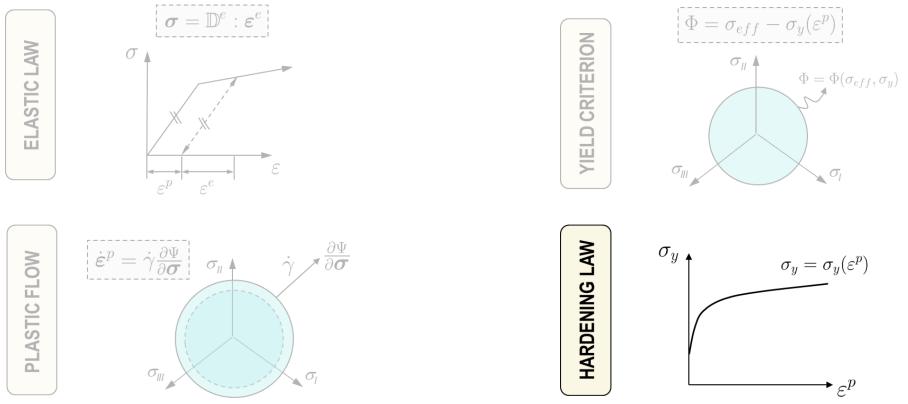
CAD discretization during meshing

Material

One material card

Process

- Operation sequences / method
- Boundary conditions
- - Working surface
- Press
 - Generally neglected
- Scatter of all parameters
 - Generally neglected


Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 18 of 38

Robustness and Numerical Process Simulation

Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 19 of 38

Robustness and Numerical Process Simulation

- Literature study for DC04
 - Gosh-type hardening

$$\sigma_{\mathcal{Y}}(\varepsilon_p) = k(\varepsilon_0 + \varepsilon_p)^n - p$$

•
$$k = \frac{R_m(A_g+1) - R_{p02}}{[\varepsilon_0 + ln(A_g+1)]^n - \varepsilon_0^n}$$

$$p = k\varepsilon_0^n - R_{p02}$$

$$\bullet$$
 ε_0, A_g, n fixed

PRMR2

VAL1

5.0

0.24

166.0

295.0

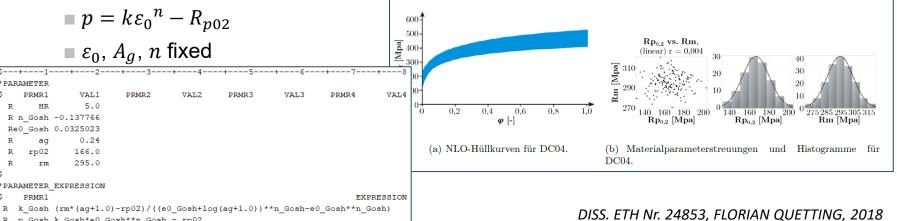
p Gosh k Gosh*e0 Gosh**n Gosh - rp02

7 -		
(ε_n)	$) = k(\varepsilon_0 + \varepsilon_n)^n -$	- p

PRMR3

$$\frac{R_m(A_g+1)-R_{p02}}{\left[\frac{1}{2}\right]^m}$$

$$p = k\varepsilon_0^n - R_{p02}$$


VAL2

\$---+---5---+---6---+---7---+---8

$\varepsilon_0, A_g,$	n	fixed	
-----------------------	---	-------	--

	$Rp_{0,2}$	Rm	ϵ_0	m
Minimum	130 MPa	$263 \mathrm{MPa}$	-	-
Maximum	$225 \mathrm{MPa}$	$328 \mathrm{MPa}$	-	-
Mittelwert	$166 \mathrm{MPa}$	$295 \mathrm{MPa}$	0,0325023	-0,137766
Standardabweichung	13,5 MPa	9,5 MPa	-	-
Verteilungsfunktion	Normal	Normal	-	-

Tabelle 2.4.: Verwendete Parameter für DC04. k und p wurden jeweils gemäß der Gleichungen 2.15 und 2.16 berechnet.

Copyright 2021, DYNAmore GmbH.

PARAMETER PRMR1

HR

aq

rm PARAMETER EXPRESSION PRMR1

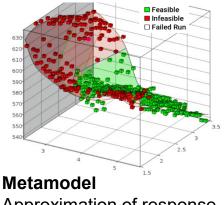
rp02

R n_Gosh -0.137766

Re0 Gosh 0.0325023

R

R


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 20 of 38

Virtual Robustness Analysis

Highly nonlinear finite element simulations are computationally expensive
 metamodel or classifier approximations are used to evaluate statistics

Approximation of response

Classifier (Support Vector Classification)

Approximation of constraint boundary

- Feasibility of each design
- → Constraints for optimization or reliability analysis
- → Adaptive Sampling

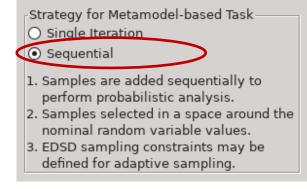
Copyright 2021, DYNAmore GmbH.

Sequential Monte Carlo Analysis

- Iteratively add space-filling or adaptively selected samples
- Convergence
- metamodel accuracy probability of failure **Convergence Statistics** Probability of failure 0.00012-0.0001 8E-05-Probability of failure 6E-05-4E-05-2E-05--0 Number of Iterations

Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.


tbumper

Case Study – Setup for Robustness Analysis Sequential metamodel-based Monte Carlo Analysis 5 simulations per iteration, 10 iterations Improvement of metamodel and classifier approximation in each iteration Improvement of estimation of probability of failure, mean value, standard deviation, ...

Task selection< Image: Constraint of the selection</th>Main taskMetamodel-basedOptimizationDOE studyImage: Monte Carlo analysisOrder RBDO/Robust Parameter DesignDirect simulationOptimizationOptimizationMonte Carlo analysisTaguchi analysis

Copyright 2021, DYNAmore GmbH.

Case Study – Setup for Robustness Analysis

Definition of classifiers

		Classifier		\odot \odot \otimes
Name for classifier				Classifier system type
FI_thickness_red_cls				Series 💌
Classifier components			Add	new
Entity Label Typ	e Lower Bound	Upper Bound	Feasible Cluster	sponses
			Re	sults
× FI Threshol	d 💽 Set lower bound	× 1		mposites
				riables
* thickness_reduction Threshol	d 💌 Set lower bound	× 35	HB	
				Gosh
				Gosh
			m	L
			rp(<u>)2</u>
			Cla	assifiers
			<u>FI</u>	<u>cls</u>
			thi	ckness_reduction_cls
Classifier type				
 Simulation designator only 				
 SVC (support vector classification) 	tion)			
Set advanced SCV options				

Copyright 2021, DYNAmore GmbH.

Case Study – Setup for Robustness Analysis

- Adaptive Sampling using classifiers!
 - 3 points adaptive (near classifier boundary) using classifier with components
 - $\max_{EL}[min_{IP}(FI)] < 1$
 - max_{EL}(thickness reduction) < 35
 - 2 space filling points

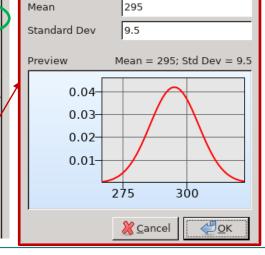
	DSD Sampling Constrain	ts	Show advar		d options					Add new
	Classifier		Lower Bound		Upper Bound	First	Gap	Last	Random	Classifiers
	 FI_thickness_red_cls 	×	-1	×	1	1 (default)	2 (default is 1)	5 (default)		FI_cls thickness_reduction_cls
N	ote: EDSD Sampling cons	tra	ints are only co	nsi	dered for points	election Space Fill	ing			

Copyright 2021, DYNAmore GmbH.

Case Study – Setup for Robustness Analysis

Noise variables

- Scatter constituted by means of statistical distribution
- Correlation between variables


Parameter Setup Stage Matrix Sampling Matrix Resources Feature	ures
--	------

Show advanced options

Noise Variable Subregion Size (in Standard Deviations) 3.0 (default i

Enforce Variable Bounds

Туре		Name	Starting	Minimum	Maximum	Distribution	Delete	
Constant	•	HR	5				Đ	\boldsymbol{X}
Constant	•	ag	0.24				6	
Constant	•	e0_Gosh	0.0325023				6	
Constant	•	n_Gosh	-0.137766			\frown	Ð	
Noise	•	rm			(rm_dist 💌	6	
Noise	•	rp02				rp 02_dict 🗸	ô	

 \odot

Delete

•

Distribution Name rm dist

Statistical Distribution 📀 🔿

Normal

X

 (\mathbf{X})

Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 26 of 38

Variable Correlation

Second Variable

rp02

Type

Mean

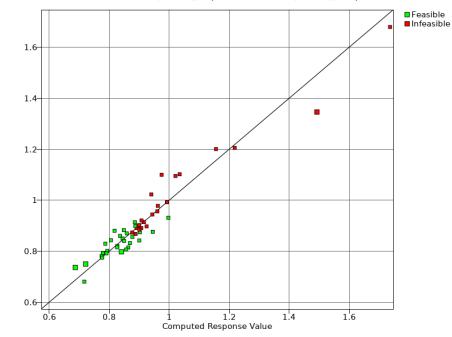
Correlation

▼ 0.004

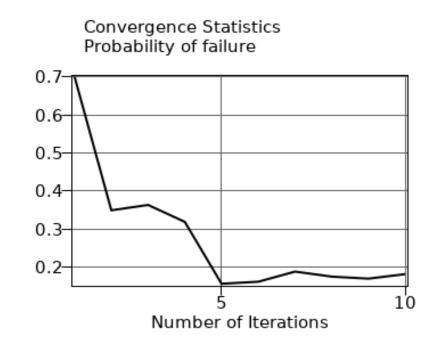
Variable Correlation

First Variable

rm


Add...

Case Study – Metamodel Quality and Convergence


Metamodel quality

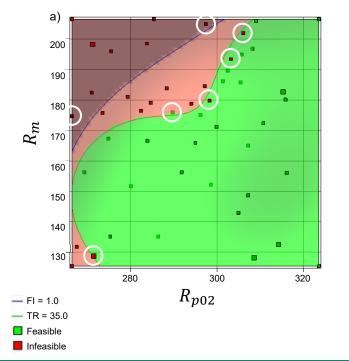
Metamodeling Accuracy For Response Function "FI"

RBF Net: RMS Err = 0.0443 (4.84 %), Sqrt PRESS = 0.0615 (6.72 %), R-sq = 0.898

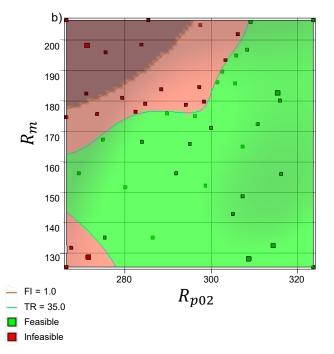
Convergence

Copyright 2021, DYNAmore GmbH.

Predicted Response Value


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

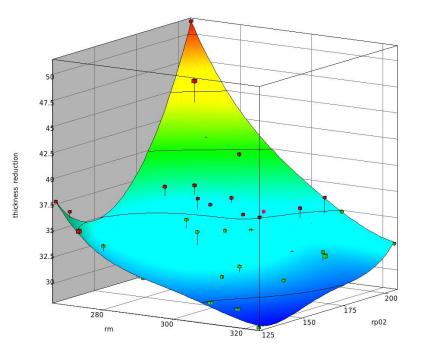
Slide 27 of 38

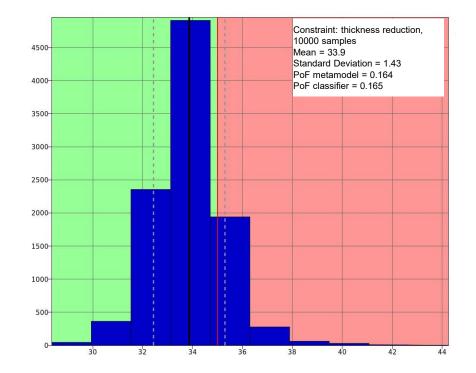


Case Study – Comparison of Failure Boundaries

Metamodel

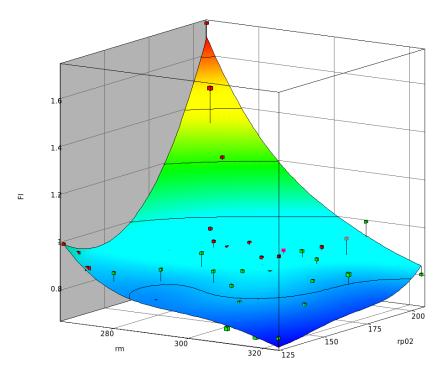
Classifier

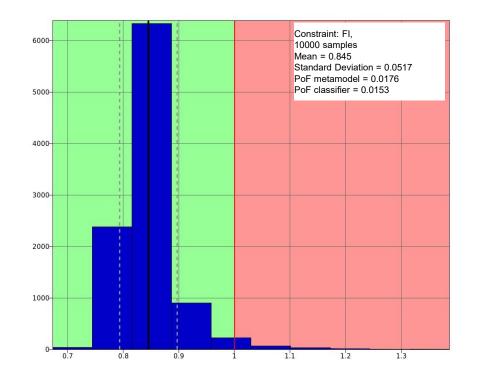

Copyright 2021, DYNAmore GmbH.


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 28 of 38

Case Study – Thickness Reduction

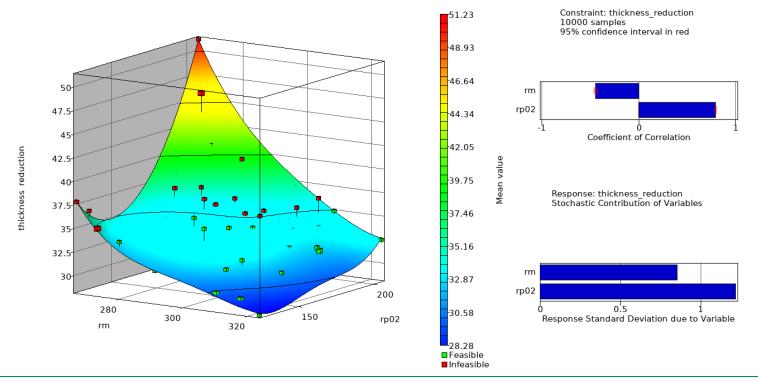

Copyright 2021, DYNAmore GmbH.


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 29 of 38

Case Study – Formability Index

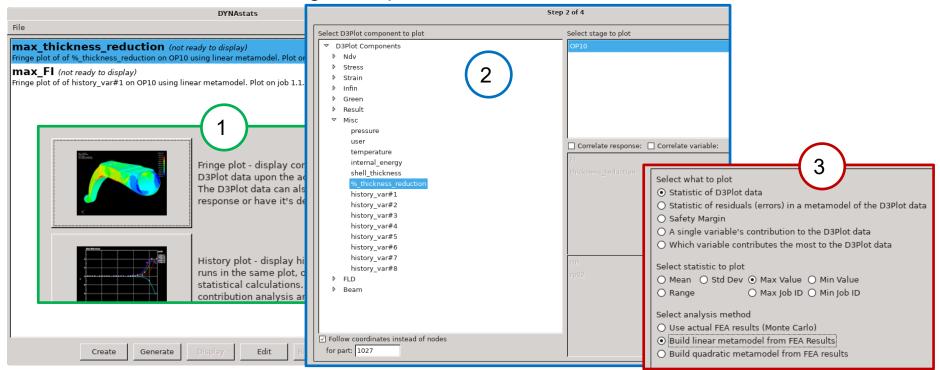
Copyright 2021, DYNAmore GmbH.


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 30 of 38

Case Study – Sensitivities

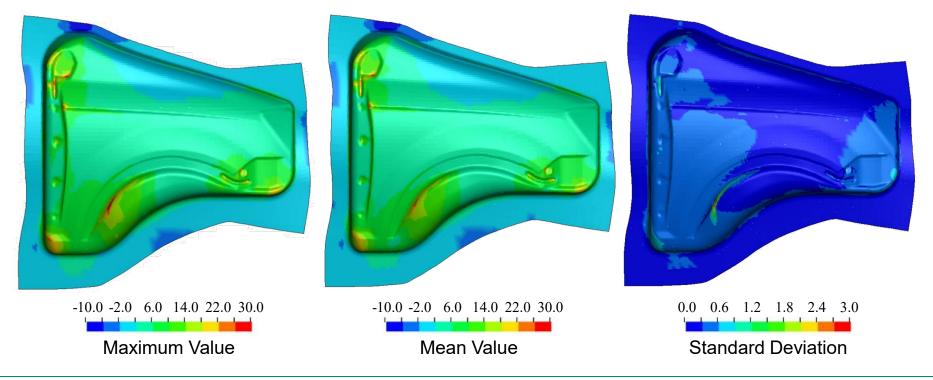
Which parameter influences the responses?



Copyright 2021, DYNAmore GmbH.

Case Study - DYNAStats

Statistical values as fringe component in LS-PrePost



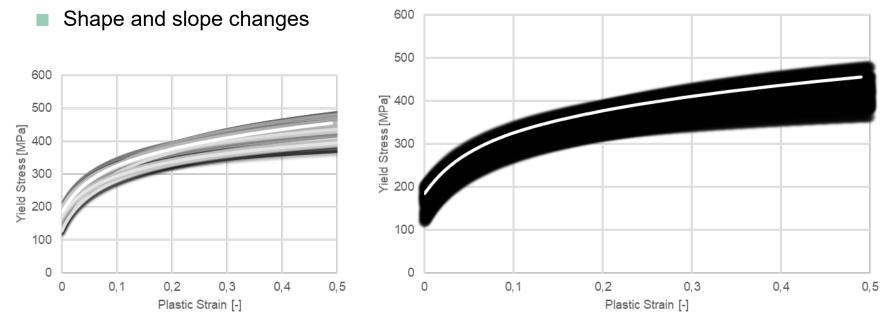
Copyright 2021, DYNAmore GmbH.

Case Study – Identification of critical zones

Based on calculated simulations to generate the metamodels

Copyright 2021, DYNAmore GmbH.

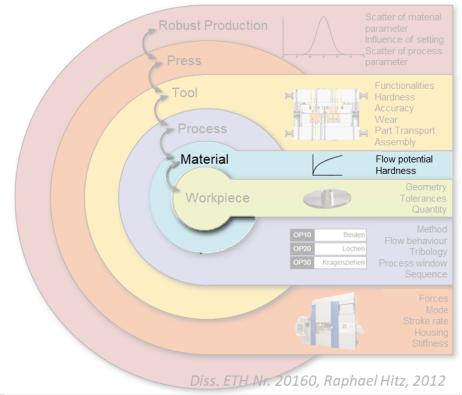
No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.


Slide 33 of 38

Summary

Comparison of initial yield curve to the yield curves of the 50 simulations

NOT a scaling


Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 34 of 38

Summary

Workpiece

CAD discretization during meshing

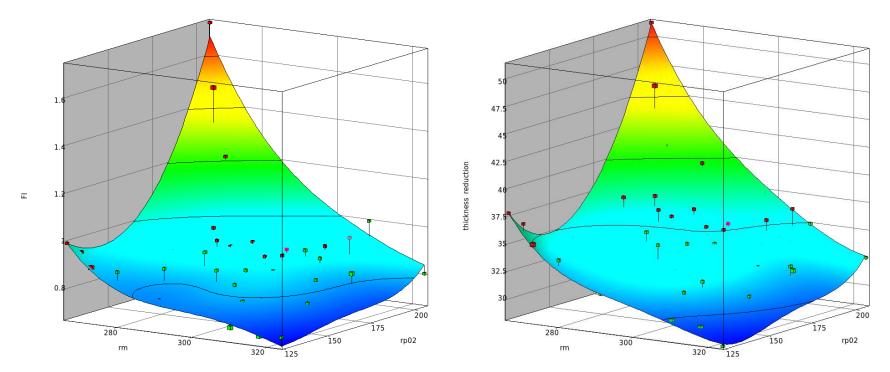
Material

One material card (one part of it)

Process

- Operation sequences / method
- Boundary Conditions
- - Working surface
- Press
 - Not in general accounted for
- Scatter of all parameters
 - Not in general accounted for

Copyright 2021, DYNAmore GmbH.


No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 35 of 38

Summary

The metamodels in this case are quite similar, due to assumptions.

Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

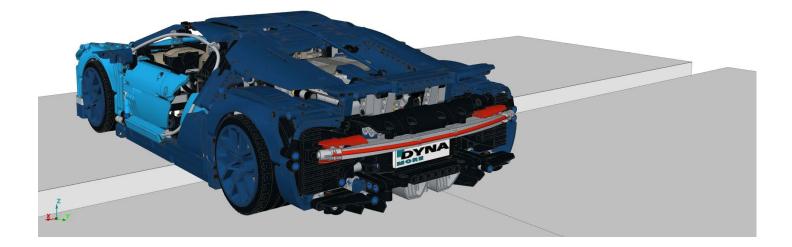
Slide 36 of 38

Outlook

- LS-Dyna inputs can be easily parametrized
 - *PARAMETER(_EXPRESSION)
 - *PART_MOVE
 - *CONTROL_FORMING_INITIAL_THICKNESS
 - *CONTACT ... (FS, FD, ...)
 - *DEFINE_CURVE (SFA, SFO, OFFA, OFFO, ...)

... Challer

Challenges:


- **1**. Having a suitable simulation model of your process
- 2. Finding the right parameters for your case
- 3. Getting a reliable range of data for your parameters

Copyright 2021, DYNAmore GmbH.

No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 37 of 38

Copyright 2021, DYNAmore GmbH. No parts may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods.

Slide 38 of 38

