Simulation and Physical Testing of an Innovative 'floating' Shallow Mount Hostile Vehicle Barrier

Arup

Dr Jon Farley, Arup Australia | Joel Smith, Arup Australia | Dr Dan Aggromito, Arup USA | Luke Pascoe, Arup Australia

© AVS-Elli

October 2022

Presentation Overview

- Vehicle as a Weapon attacks
- Test standards
- Vehicle barrier development history
- Problem statement: Protection of bridges
- Development of new product
- Physical testing results

Vehicle As a Weapon

Vehicle As a Weapon attacks are a subset of vehicle borne threats – a threat where the use of a vehicle is the primary tool:

Three subsets of Vehicle Threats:

- 1. Kinetic delivery mechanism (VaW)
- 2. To deliver an explosive payload (VBIED)
- 3. To enable a layered attack

Testing Standards

Three Primary Standards:

- IWA 14-1 Europe
- PAS68 UK
- ASTM F2656 USA

Key Features:

- Physical vehicle test (roadworthy)
- Impact at set speeds (30mph, 40mph 50mph)
- Specific vehicle classes and parameters
- Data measurement on post impact penetration
- Tests remain expensive 50,000GBP

b) Post-impact

a) Pre-impact

Key 1 VSB (e.g. bollard)

vehicle datum point

2 VSB datum line

4 vehicle penetration distance

5 major debris

6 major debris distance

Figure 6 — Vehicle penetration distance and major debris distance - Side view

Vehicle classification	M1	N1G	N1	N2A	N2B	N3C	N3D	N3E I)	N3F1)
Type of test vehicle ^A)	Car	4x4 crew cab pick-up	Day cab vehicles ^E)						
			Flat bed H)	2-axle rigid	2-axle rigid	2-axle rigid	2-axle rigid	3-axle rigid	4-axle rigid
Test vehicle mass (kg)	1 500	2 500	3 500	7 200		12 000	24000	30 000	
Minimum unladen mass (kg)	1 2 3 5	1700	1 675	3 575	5 200	6 100	6 200	9 750	10 500
Maximum ballast (kg) ^{B), C)} Maximum secured Maximum unsecured Tolerance (kg)	265 265 50 ±50	800 800 50 ±50	1 825 1 825 75 ±50	3 625 3 625 100 ±50	2 000 2 000 100 ±50	1 100 1 100 100 ±50	5 800 5 800 100 ±50	14 250 1 000 14 250 ±50	19 500 1 000 19 500 ±50
Test vehicle mass (kg) Tolerance (kg) ^{D)}	1 500 ±75	2 500 ±75	3 500 ±100	7 200 ±400	7 200 ±400	7 200 ±400	12 000 ±400	24 000 ±400	30 000 ±400
Vehicle length (mm) ^{E)} Tolerance (mm)	4 500 ±360	5 200 ±600	6 200 ±380	7 610 ±1 520	8 340 ±1 670	9 560 ±1 910	8 900 ±1 900	7 640 ±1 200	9 600 ±1 000
Vehicle width (mm) ^{F)} Tolerance (mm)	1 760 ±150	1 850 ±200	2 100 ±175	2 400 ±200	2 400 ±200	2 500 ±225	2 500 ±225	2 400 ±200	2 500 ±225
Wheel base (mm) ^{G)} Tolerance (mm)	2 700 ±540	3 200 ±500	3 805 ±710	4 310 ±830	5 275 ±1 100	5 910 ±1 250	5 450 ±1 250	5 600 ±500	6 800 ±500
Height from ground to lowest edge of the chassis rail at the front (mm) Tolerance (mm)	n/a	435 ±75	440 ±120	515 ±175	630 ±175	750 ±200	845 ±225	750 ±200	810 ±200

Vehicle Barriers Design

- Historic development: lots of steel and concrete
 - Very stiff vehicle does the deforming
 - Unyielding (elastic methods)
 - Deep foundations to transfer load to ground
- Recently: lighter, shallower, operable
 - Growing need for retrofit (protection of existing infrastructure)
 - Complex ground conditions (services, structures)
 - Vehicle barrier 'absorbs' impact

ARUP Problem Statement – Bridge footpath protection

- In 2017 London Bridge attacks occurred
- Bridges were identified as a higher risk (threat deflection)
- Historic structures (+100 years)
- Limited load capacity
- Very limited foundation depths
- Movement / expansion joints

Very few products exist in the market

London Bridge van & knife attack June 3 2017 10.07pm Van driven by attackers hits Xavier Thomas, who falls into River Thames. His body is found three days later, two miles downstream River Our Christine Archibald struck and Thames killed by van Van crashes into railings outside Barrowboy & Banker pub. Attackers stab and kill lames McMullan and Sara Zelenak O Attackers enter courtyard in Southwark Borough Market, stabbing Cathedral Sebastien Belanger and Alexandre Pigeard. Belanger dies on the scene 6 Pigeard dies outside Borough **High Street** Southwark Cathedral. Kirsty Boden stabbed while trying to help Mr Pigeard. She dies later that night Ignacio Echeverria knifed on Borough High Street trying to fight off attackers. He dies later 10,16pm while being carried by a doctor Police surround attackers outside across London Bridge Wheatsheaf pub, shooting them dead

PA graphic

Vehicle Model Validation

N2A Vehicle Validation

SCALE REDACTED

Typical Values at 48k	mh impact:
Peak Force:	1250kN
Impact Duration:	180ms
Impulse:	100kNs

Developed Solution

- Linear array of bollards connected through base plate
- Bollards designed with internal absorption structure
- Base plates connected via tabs and reo-bar

- Linear Bollard Setup:
 - 5 x Base Plate Assembly
 - 15 x Bollard Assembly
 - 15 x Internal Stiffener Assembly
- N2 Vehicle:
 - Speed: 48 km/hr
 - Mass: 7.5 tonne
 - Angle: 30 degrees from x-axis (about z-axis)

Le and a le

Barrier Simulation

D3PLOT: MATERIAL_DATABASE 1: Max S2019783 : 7.273670E-01, Min S2015790 : 1.022290E-08

MAX Princ Stress (Mid surface) (Abs Max Value)

> 0.00 83.33 166.67 250.00 333.33 416.67 500.00

x 1.0E-03

t v

ARUP MAX Princ Stress (Mid surface) D3PLOT: MATERIAL_DATABASE 1: Max S1618901 : 1.073323E+00, Min S8156055 : 1.147126E-04 (Maximum Value) 0.00 83.33 166.67 250.00 333.33 416.67 x 1.0E-03 Cr. Cr.

484.999695

Physical test results – Vehicle Bollards

IWA 14-1 | N2A, <u>48kmh</u>, <u>30degs</u>

Physical test results – Vehicle Bollards

IWA 14-1 | N2A, 48kmh, 30degs

Physical test results – Vehicle Bollards

IWA 14-1 | N2A, 48kmh, 30degs

Test Results – Vehicle Barrier

D3PLOT: CPNI BOLLARD - GATE R005

Lessons Learnt

- Simulation work enabled both products to achieve a test pass first time
- Validation set remains very small!
- Global model response is reasonable
- BUT detail lacking for systems response (cab, suspension failure)
- Product sales numbers are small, development budgets are tight

Thanks

Quick thankyou to collaborators:

Nigel Buckley – AVS Elli (Designer & Manufacturer) Dr Dan Aggromito – Arup San Francisco Joel Smith – Arup Melbourne Luke Pascoe – Arup Melbourne

