x
Our website uses cookies. By using the website you agree ot its use. More information can be found in our privacy policy.

LS-DYNA Compact: Simulation of fiber-reinforced plastics

Increasing requirements on stiffness and strength together with the need to reduce weight, lead to further developments of fiber reinforced composites within the last decades. Nowadays, those materials are used for structural relevant components of high-volume production applications. Therefore, it is necessary to develop procedures that allow quantifying the complex load carrying and failure as well as damage mechanisms of these materials with numerical simulations.

In the provided course series, we will discuss serveral aspects of modeling short, long and continuous fiber reinforced plastic materials with LS-DYNA, starting with a general discussion of the most important keywords, integration rule definition and pre- and postprocessing. The second course will cover material models commonly used for short and continuous fiber reinforced composite modeling in LS-DYNA. Focus is put on the
different failure criteria and post-failure handling. The third course will show possibilities to model delamination with either cohesive elements or tiebreak contacts in LS-DYNA.

day 1) Composites Modeling in LS-DYNA
Important Keywords
Integration Rule Definition
Pre- and Postprocessing with LSPP
Differences btw. SFRP & CFRP

day 2) Composite Material Models in LS-DYNA
CFRP Material Models
*MAT_022
*MAT_054
*MAT_058
*MAT_261
*MAT_262
SFRP Material Models
*MAT_157
*MAT_215

day 3) Delamination Modeling
Cohesive Element Formulation
Cohesive material Models
Tiebreak Contacts

 

Details
Date 18.01.2021 (3 days)
Lecturers Christian Liebold
Location Online
Languages English
Price
Standard (600 € + VAT)
Employee of University (300 € + VAT)
Student (60 € + VAT)
ICal
Registration Registration