Improving Analysis Accuracy By Modeling rivets/bolts As Solids In Sheet Metal Structure
In general, main assembly consists of different sub-assemblies. These sub-assemblies are joined together using rivets/bolts, welds etc. Individual subassembly is often verified for performance using commercial CAE software. To save time, rivet/bolt joints are usually modeled with beam-spider arrangement. Spider represents the rivet/bolt head and a beam connecting two spiders at the centre represents the rivet/bolt diameter. Analyst’s always try to perfect the verification close to practical conditions. In this article, the belt anchorage bracket in seat track assembly is considered for simulation. The performance of rivets joining the belt anchorage bracket to the upper rail of the track is studied in detail. In first simulation, these rivets are modeled with solid hexahedral elements. In the second simulation, these rivets are modeled with beam-spider arrangement. Stresses around the holes, in sheet metal belt anchorage bracket, are studied in both simulations. It has been found, that solid rivet proved to be better option over the beam-spider arrangement. The simulation is carried out as quasi static analysis in Ls-Dyna 971.
https://www.dynamore.de/en/downloads/papers/09-conference/papers/B-II-02.pdf/view
https://www.dynamore.de/@@site-logo/DYNAmore_Logo_Ansys.svg
Improving Analysis Accuracy By Modeling rivets/bolts As Solids In Sheet Metal Structure
In general, main assembly consists of different sub-assemblies. These sub-assemblies are joined together using rivets/bolts, welds etc. Individual subassembly is often verified for performance using commercial CAE software. To save time, rivet/bolt joints are usually modeled with beam-spider arrangement. Spider represents the rivet/bolt head and a beam connecting two spiders at the centre represents the rivet/bolt diameter. Analyst’s always try to perfect the verification close to practical conditions. In this article, the belt anchorage bracket in seat track assembly is considered for simulation. The performance of rivets joining the belt anchorage bracket to the upper rail of the track is studied in detail. In first simulation, these rivets are modeled with solid hexahedral elements. In the second simulation, these rivets are modeled with beam-spider arrangement. Stresses around the holes, in sheet metal belt anchorage bracket, are studied in both simulations. It has been found, that solid rivet proved to be better option over the beam-spider arrangement. The simulation is carried out as quasi static analysis in Ls-Dyna 971.