High-Mass, Low-Velocity Impacts on Reinforced Concrete Slabs

The behaviour of reinforced concrete in quasi static regimes has been investigated extensively but there have been few investigations into its transient behaviour, especially under low velocity regimes. This paper describes the finite element modelling and analysis of reinforced concrete slabs under drop-weight impact loads using LS-DYNA. The results obtained from the numerical simulations have been compared with tests that were carried out at Heriot-Watt University to generate high quality input data to validate numerical modelling. The experiments were conducted on four 0.76 m and two 2.3 m square slabs under drop-weight loads. A drop-weight system was used to drop a mass of up to 380 kg with velocities of up to 8.7 m/s. The output from the tests included time histories of impact force, acceleration, strains and video footage using a high-speed video camera which recorded the images at the rate of up to 4,500 frames per second. The simulation results show reasonable agreement when compared to the tests and for the overall kinematic response of the slabs.

application/pdf M-I-02.pdf — 1.8 MB