Modeling Metallic Materials

Plenty of material models are available in LS-DYNA for describing the mechanical behavior of metallic materials. However, a profound understanding of the adopted material model is crucial for obtaining reasonable and reliable FE simulation results.

 

The aim of this class is to give practical guidelines about the application of the most commonly used material formulations. The focus will be especially on the underlying basic theory as well as on the assumptions made for the corresponding material formulations. Moreover, besides the practical information about particular input formats and the relevance of special settings, the algorithmic background of the various models will also be highlighted. Finally, diverse applications for the most commonly used metallic material models in LS-DYNA will be illustrated with the help of simple examples.

Contents:

 

─        Review of rheological models

─        Stress and strain measures

─        Concepts of computational plasticity

─        Presentation of the von Mises model

─        Selection of LS-DYNA material models based on von Mises plasticity

─        Description of *MAT_024

─        Calibration of isotropic hardening curves

─        Discussion on some metallic alloys

─        Plasticity with isotropic damage (*MAT_081)

─        A material model for transformation induced plasticity alloys (*MAT_113)

─        Presentation of a Gurson-based material model in LS-DYNA (*MAT_120)

─        A material model with tension-compression asymmetry (*MAT_124)

─        A Generalized Yield Surface model for tension/compression/shear asymmetry (*MAT_224_GYS)

─        Review of anisotropic concepts (e.g., R-Values)

─        Barlat 1989 model in LS-DYNA (*MAT_036)

─        Retrieving Tresca’s yield criterion in LS-DYNA

─        A Hill-based model for transverse anisotropy (*MAT_037)

─        The _NLP_FAILURE option

─        Barlat 2000 anisotropic model (*MAT_133)

─        Aretz 2004 anisotropic model (*MAT_135)

─        Short review of kinematic hardening

─        A simple plasticity model with mixed hardening (*MAT_003)

─        Extension of *MAT_024 to account for mixed hardening (*MAT_225)

─        Overview of the mapping capabilities in LS-DYNA

 

Prior attendance at the class 'Introduction to LS-DYNA' is strongly recommended.

Dates
Dates Duration/days Registration Referee Language Location Fee
23.04.2020
2 days
Filipe Andrade
Turin (ITA)
1050 €
15.06.2020
2 days
Filipe Andrade
Stuttgart (GER)
1050 €
15.09.2020
2 days Registration Versailles (FRA)
1050 €
16.11.2020
2 days Registration
Filipe Andrade
Stuttgart (GER)
1050 €

Lecturers

Filipe Andrade
Filipe Andrade
Dr.
Spezialgebiete: Materialmodellierung, FE-Theorie
Studium: Maschinenbau
André Haufe
André Haufe

Prof. Dr.-Ing.

Leiter Kompetenzfeld Prozesssimulation

Spezialgebiete: Materialmodellierung, Umformsimulation, Verbindungstechnik
Studium: Bauingenieurwesen

Thomas Münz
Thomas Münz

Dr.

Leiter Zentrale und Engineering Services

Spezialgebiet: Materialmodellierung
Studium: Techno-Mathematik

Julien Lacambre
Julien Lacambre

Diplôme d'Ingénieur
Areas of expertise: Crash and impact simulations
Academic studies: Aerospace Engineering

Contact
contact Maik Schenke
  • Training Courses
  • Multiphysics
contact Carina Sieber
  • Seminar Organization
  • Marketing
  • Order Processing
0