Diese Website verwendet Cookies. Mit der Nutzung der Website stimmen Sie deren Verwendung zu. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.

Characterization of Polyolefins for Design Under Impact: From True Stress/ Local Strain Measurements to the FE-Simulation with LS-DYNA Mat. SAMP-1

Optical strain measurement for the mechanical characterization of polymers, and in particular of polyolefins, is becoming a common practice to determine the parameters to be used in a finite element analysis of crash problems. This experimental technique allows measuring the strain locally on the specimen, so that it is particularly suitable when the deformation is localized, as in the case of polymers: therefore a more accurate description of the behaviour of the material is obtained. By so doing, it is possible to describe the material constitutive law in terms of the true, local strain and of the true stress. As these data are those needed by the most complete material models developed for impact calculation, it is clear that this technique is particularly suitable for coupling with the most advanced material models currently available in the F.E. codes, as for instance with Mat 187 (SAMP- 1) of LS-Dyna. The local measurement of the strain can also be used for evaluating the volume strain, whose evolution with the increasing strain shows that for PP-based material the deformation is not isochoric in most the cases. The observed increase in the material volume reflects the fact that voids generate and coalesce within the material, possibly resulting in fracture. The measure of the volume strain, computed as the trace of the strain tensor, is here used for determining the damage function utilized by the damage model implemented in SAMP-1. The effective stress is here estimated as the stress which would be measured if the deformation was isochoric, and it can be assessed on the basis of the measurement of the longitudinal local strain only. Corresponding to each value of longitudinal strain, the volume strain is then used to calculate the ratio between the effective and the true stress. Adopting this procedure, the damage function is thus determined without the needs of repeated loading-unloading tests used to derive the damage parameter from the unloading slope, which is furthermore difficult to be measured. As an application, the results of the numerical reproduction of a benchmark test, consisting in a drop test on a polypropylene box, are presented and discussed

application/pdf D-I-02.pdf — 478.5 KB