An airbag application for the ALAR incidences for the Passenger Aircrafts
The airbag system can be designed to reduce the damage on the fuselage during an Approach and Landing Accident Reduction (ALAR) situations as well as ditching in the water for the transcontinental flights. Minimum hull damage protects the passengers in deep waters. A preliminary investigation for this end is performed in this paper. A simple model under 10000 elements is used to investigate the problem. The findings of the LS-DYNA finite element simulation are reported in this paper. It also shows a filtering effect on the impact pulse on the structure. The spikes on the deceleration pulse can create injury to the occupants. The airbag filters the pulse thus reducing various injuries to the occupant apart from hull protection. The most useful feature is its automatic deployment at the most critical moment. This is also useful for the small and mid-size aircrafts to survive various ALAR incidences. It saves life as well as property in case of the small crafts.
https://www.dynamore.de/de/download/papers/konferenz11/papers/session17-paper1.pdf/view
https://www.dynamore.de/@@site-logo/DYNAmore_Logo_Ansys.svg
An airbag application for the ALAR incidences for the Passenger Aircrafts
The airbag system can be designed to reduce the damage on the fuselage during an Approach and Landing Accident Reduction (ALAR) situations as well as ditching in the water for the transcontinental flights. Minimum hull damage protects the passengers in deep waters. A preliminary investigation for this end is performed in this paper. A simple model under 10000 elements is used to investigate the problem. The findings of the LS-DYNA finite element simulation are reported in this paper. It also shows a filtering effect on the impact pulse on the structure. The spikes on the deceleration pulse can create injury to the occupants. The airbag filters the pulse thus reducing various injuries to the occupant apart from hull protection. The most useful feature is its automatic deployment at the most critical moment. This is also useful for the small and mid-size aircrafts to survive various ALAR incidences. It saves life as well as property in case of the small crafts.