A modified approach for simulating complex compound structures within early design steps

Owing to increasing relevance of lightweight design the deployment of compound structures with their beneficial material characteristics becomes more and more important. These growing demands for lightweight design cannot be met by improving constructive details at the end of the development cycle. On the contrary already the early design steps have to be exploited adequately, since these steps offer the highest freedom of design. The present paper shows a modified approach for simulating complex compound structures adapted to the requirements of early design steps. The basic idea is overlapping several basic material models (characterized by a low amount of input parameters) within one finite shell formulation to describe any combination of material effects. The benefit of the approach is a more accurate simulation of complex compound structures with reduced modeling effort. A validation of this phenomenological material superposition approach is performed by opposing the results of virtual material tests to experimental results published in the literature.